Experimental Detection of Dark Matter

Astro Physics Meeting, Pune 25 February, 2018

Satyaki Bhattacharya Saha Institute of Nuclear Physics Kolkata, India

Avenues of Dark Matter Searches

Direct Detection (DD)

Backgrounds

- Cosmogenic, radiogenic, intrinsic
- Discriminate between electron recoil (ER) and nuclear recoil (NR)

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

Scintillators at room temperature

- Nal(TI), Csl(TI)
- Scintillation light in suitable range for photosensors (415,580 nm for NaI, CsI)
- Large stopping power (3.5, 4.5 gm/cc density)
- Resolution 8% at 1 MeV
- No particle discrimination possible
- Aim for ultra radio pure crystal

DAMA@LGNS

- Ultra radio pure Nal(Tl)
- DAMA + DAMA/LIBRA collected 1.33 ton. Year
- Annual modulated rate in the range (2-6) KeVee
- Maximum is compatible with June 2nd, within 2σ
- 9.3σ significance over 14 annual cycles

DAMA: annual variation

Cryogenic Bolometers

- Operating at milli Kelvin (mK)
- Very low threshold, excellent resolution
- Phonon (+ scintillation/charge)
- Can discriminate electron and nuclear recoils
- Applied electric field for charge can enhance phonon signal generated by drifting electron-hole pairs (Neganov Luke phonons)

Cryogenic Bolometers

- Weakly coupled to thermal bath at 10 100 mK
- $\Delta T = (E/C(T))*exp(t/\tau)$ is measured
- Small heat capacity C(T) at low temp (T³ dependence) gives large ΔT
- Ge shows a rise of 1 μK at 20mK for few keV recoil
- Read out with transition edge sensors (TES) or neutron transition doped (NTD) Ge sensors

CDMS: Cryogenic Dark Matter Search

- CDMS, CDMS II used Ge, Si bolometers
 - Upto 11 Ge detectors (230 gms) and 9 Si detectors (100 gms)
- Z sensitive Ionization phonon radiation detectors (ZIP)
- Main background: misidentified electron recoil from surface
 - Controlled by pulse shape discrimination
 - 1 in 10⁶ mis-id rate

CDMS results

- $\sigma < 3.8 \times 10^{-44} \text{ cm}^2 \text{ for } M_{\chi} = 70 \text{ GeV from combined}$ CDMS II
- Best threshold (3-14) keV gives:
- σ of 10⁻⁴¹ cm² at M_{χ} = 7 GeV
- Si with 23.4 kg.d, E_{recoil} in (7-100) keV_{nr}, excess was observed at σ of 1.9 x 10⁻⁴¹ cm² for M_{χ} = 8.6 GeV (in the range of DAMA, CoGent)
- Later results do not confirm the excess
- No evidence of annual modulation (contradicts CoGent)

SuperCDMS

- Successor of CDMS-II
- Interleaved ZIP interleaved structure of phonon and ionization electrodes
- 15 Ge crystals with 0.6kg each
- Sensitive to NR in (1.6 10)keVnr
- Target mass range $M_{\gamma} < 30 \text{ GeV}$

- Recorded exposure 577 kg.d
- Limit: $\sigma < 1.2 \times 10^{-42} \text{ cm}^2$ for M_y = 8 GeV

CDMSlite

- Low Ionization Threshold
- Single crystal exploiting Neganov-Luke effect
- Improved threshold, resolution
- No discrimination between NR and ER
- Best limits in the low WIMP mass region from superCDMS, CDMSlite

EDELWEISS@LSN

- Measures thermalised phonons with NTDs
- Interleaved structure for charge readout
- EDELWEISS-III exposure 582 kg.d (24 Ge detector 0.8 kg each)
- Search range (2.5 20) keVnr

Plans to improve detector to reach lower mass

EDELWEISS-III

10⁻⁴⁰ cm² reached at 5 GeV
7 times Improvement with likelihood analysis at 4 GeV

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

CRESST-II @ Gran Sasso(LNGS)

- CaWO4 with TES readout
- Phonon + scintillation (particle discrimination)
- Exposure 730 kg.d with 8 detectors
- Energy thresholds in range (10.2 19.0) keVnr
- Observes excess at

- σ 3.7 x 10⁻⁴¹ cm², M_{\chi} = 11.6 GeV (4.2 sigma) - σ 1.6 x 10⁻⁴² cm², M_{\chi} = 25.3 GeV (4.7 sigma)

CRESST-II

- Main background is collision of Pb nucleus with crystal(from α decay of ²¹⁰Po, α is undetected)
- With an improved detector higher alpha detection and phonon, photon efficiency was achieved.
 - 600 eVnr threshold!
- Signal could not be confirmed with 29.35 kg.d
- Limit: $\sigma < 8 \times 10^{-40} \text{ cm}^2$ for M_{χ} = 3 GeV
- With lowest threshold of 307 eV, 52 kg.d first bolometer to be sensitive in sub-GeV range at $\sigma \sim 10^{\text{-}37} \text{ cm}^2$!

EURECA

- A joint effort of EDELWEISS, CRESST, ROSEBUD
- EURECA aims to operate 1000 kg detectors
- Scintillators and Ge
- Would be located in LSM
- Sensitivity goal 3 x 10⁻⁴⁶ cm²

Noble Gas Detectors

Noble Gas Detectors

- 4π coverage
- Position resolution ~ cm
- Z from time of S1-S2, X-Y from hit pattern
- Position resolution ~ mm

Noble Gas Detectors

• DEAP,CLEAN, XMASS with LAr

- DarkSide with LAr
- ZEPELIN, XENON, Lux, LZ with Xe

Noble gas detectors

- Main background : gamma/electron
- The detectors can separate between NR and ER
- Ar has large separation power due to different ratio of singlet and triplet states of excitation for different particles
- Xe sensitive to SD scattering due to about 50%
 ¹²⁹Xe and ¹³¹Xe isotopes

Xenon @ LNGS

- XENON, ZEPLIN showed the effectiveness of LXe TPC
- 2009 2016 XENON100 (60 kg TPC mass)
- Combined exposure 1.75 X 10⁴ kg.d • Limit: $\sigma < 1.1 \times 10^{-45} \text{ cm}^2$ for M = 50

GeV

- Also performed Axion search
- excludes DAMA results @ 5.7 σ
- From 2016 XENON1T taking data
- XENONnT: Upgrade from 3T to 7T in future

Astro Meeting, IISER Pune, 25, 2018

Xenon @ LNGS

- XENON, ZEPLIN showed the effectiveness of LXe TPC
- 2009 2016 XENON100 (60 kg TPC mass)
- Combined exposure 1.75 X 10⁴ kg.d • Limit: $\sigma < 1.1 \times 10^{-45} \text{ cm}^2$ for M = 50

GeV

- Also performed Axion search
- excludes DAMA results @ 5.7 σ
- From 2016 XENON1T taking data
- XENONnT: Upgrade from 3T to 7T in future

Astro Meeting, IISER Pune, 25, 2018

LUX @ Sanford

- 250 kg active mass
- Threshold of 1.1 keVnr
- Provides best limit Limit: $\sigma < 1.1 \times 10^{-46}$ cm^2 for $M_{\chi} = 50 GeV$, an order of magnitude below XENON

Superheated liquid detectors

- Bubble Chambers
 - COUPP
 - PICO (PICASSO + COUPP)

- Droplet Detectors
- Suspended droplets
 - PICASSO
 - SIMPLE
- Accoustic signals from mini explosions
- Free from gamma X-ray, beta backgrounds
- Alpha is the main background

PICO @ SNOLAB

- C₃F₈ droplets of average size 200 micron
 - Accoustic signal read by Pizo crystals 2.5 MHz
- 3.3 keV threshold
- PICO 60 and PICO-2L
- Flourine sensitive to SD proton coupling interaction
- Latest result from 52 kg detector with 1167 kg.d

PICO: spin dependent analysis

 Most stringent bound on SD proton-WIMP cross section

Evolution of Sensitivity

SI interactions summary

SD limits summary

Next generation aims to reach neutrino floor --> at low mass lower thresholds, at high mass higher Astro Meeting, IISER Pune, 25 018 **Getector Mass** Satyaki Bhattacharya

2018

Dark Matter Search at LHC

- ATLAS and CMS at the LHC are capable of probing DM direct production in the range $\sim 1 GeV - 1 \mbox{ TeV}$

Mono-X at LHC

Mono-jet

Mono-photon
Mono-X at LHC

Mono-jet

tt/bb

Mono-Z(leptonic)

Mono-h (bb, $\gamma\gamma$)

Mono-W/Z(hadronic)

Mono-photon

Mono-X + MET : Simplified model and EFT

LHC in 2016 and future

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} = 13$ TeV

Monophoton + MET

monophoton @ 13 TeV

ATLAS, arXiv:1704.03848, Eur. Phys. J. C 77 (2017) 393

- Analysis probes simplified model parameters and EFT vertex $qq\chi\chi$
- Dominant backgrounds from $Z(vv)/W(lv)\gamma,\gamma+jets$
- Analysis requires a photon with ET > 150 GeV, $d\phi(\gamma, MET) > 0.4$
- Veto >1 jets, no leptons
- several signal regions in ranges of MET, starting from MET > 150 GeV
- Normalisation of Z/Wγ,γ+jets combined profile likelihood fit of control regions (1μ, 2μ, 2e,γ+jets)
- Dominant systematics from jet->γ fake factor (1-5%), e->γ fake factor (1.5%), jet energy scale (6-1%)

ATLAS monophoton @ 13 TeV

CMS monophoton @ 13 TeV

12.9 fb⁻¹

ATLAS Monophoton @ 13 TeV

CMS monophoton @ 13 TeV

Monojet : topologies and interpretations

CMS monojet @ 13 TeV

Veto: Monojet p_{-} of AK4 jet > 100 GeV, $|\eta| < 2.5$ E/ μ with $p_{\tau} > 10$ GeV, τ with $p_{-} > 18 \text{ GeV}$, photon with $p_{-} >$ Mono V: AK8 jet $p_{-} >$ CMS Experiment at LHC, CERN 250 GeV, |η| < 2.4 Data recorded: Fri Oct 5 20:41:32 2012 CE Run/Event: 204553 / 26729384 15 GeV Lumi section: 31 V tagging: pruned jet Jet 0. et = 921.9 mass in {65,105} GeV eta = -0.463 + n subjettiness $\tau 2/\tau 1 <$ 0.6 MET > 250 GeV ϕ (jet,MET) > 1.4 MET 0. for first 4 jets pt = 913.68 eta = 0.000bhi = -0.65

CMS monojet/mono-V @ 13 TeV

- Dominant background Z (vv) + jets, W(lv) + jets
- Control regions(CR), with pT of hadron recoil system as proxy for MET
- Constrain electroweak
 backgrounds
- Binned likelihood fit of hadronic recoil to estimate Zjets and Wjets spectra in signal region
- Bin by bin transfer factors (TF) to extrapolate to signal region(SR)
 - PT dependent NLO k-factors

Astro Meeting, IISER Pune, 25, 2018

35.9 fb⁻¹ (13 TeV)

- For pseudoscalar mediator bound is on velocity averaged DM annihilation cross section
- Quark scattering suppressed at low velocities
- Compared with FermiLAT
- SD bounds better than PICO 60 for $M_{DM} < 500 \text{ GeV}$

Z(II) + MET

ATLAS-CONF-2017-040,

(b)

CMS Z(II) + MET

- MET > 100 GeV,
- Dilepton pT > 60 GeV
- MET, pTII balance
- No additional lepton, tau events with more than 1 jets above pT 30 GeV

CMS Z(II) + MET @ 13 TeV

- Vector mediator mass upto ~650 GeV excluded @ 95% CL for DM mass below ~200 GeV
- Axial vector mediator mass exclusion lies between 500

 700 GeV @ 95% CL, for
 DM mass below ~ 150
 GeV

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacl

CMS bounds on DM-nucleon scattering cross section from Z (II) + MET

CMS bound on invisible higgs BR from Z (II) + MET

Astro Meeting, IISER Pune, 25, 2018

ATLAS Z(II) + MET summary

CMS Bounds on DM-Nucleon scattering (SI)

CMS Bounds on DM-Nucleon scattering (SI)

ATLAS bounds on DM-nucleon scattering (SI)

CMS bounds on DM-nucleon scattering (SD)

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

ATLAS bounds on DM-nucleon scattering (SD)

Dijet

Dijet 8 TeV $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Phys. Rev. D. 91 052007 (2015) Dijet $\sqrt{s} = 13$ TeV, 37.0 fb⁻¹ arXiv:1703.09127 [hep-ex] Dijet TLA $\sqrt{s} = 13$ TeV, 3.4 fb⁻¹ ATLAS-CONF-2016-030 Dijet + ISR $\sqrt{s} = 13$ TeV, 15.5 fb⁻¹ ATLAS-CONF-2016-070 $E_T^{miss} + \chi$ $E_T^{miss} + \gamma \sqrt{s} = 13$ TeV, 36.1 fb⁻¹ Eur. Phys. J. C 77 (2017) 393 $E_T^{miss} + jet \sqrt{s} = 13$ TeV, 36.1 fb⁻¹

ATLAS-CONF-2017-060

= PICO-60 C₃F₈ arXiv:1702.07666v1 [astro-ph.CO]

Conclusion

- Direct searches have some interesting excesses which are not confirmed by other experiments
- New experiments are looking at larger volumes and lower thresholds
- From LHC many new results @ 13 TeV
- No evidence (so far!)
- Translated to bounds on DM-Nucleon scattering cross sections
- Complements direct searches, specially in lower mass region of SD scattering
- Next decade will be of interest

backup

Searches with scalar/pseudo-scalar

Shin-Shan Eiko Yu, EPS 2017

 For the mono-V channel, pseudo-scalar/Scalar limits include ggZH diagrams only because VH generators do not yet include mixing with SM Higgs

ttbar is the best at low-mass

ATLAS Mono h (bb) + MET @ 13 TeV, 36 fb⁻¹

ArXiv 1707.01302

- Both small R and large R jets used (large R jets must be > 200 GeV)
- Analysis with merged jets in the highest MET bin (> 500 GeV)
- Trimming and jet substructure variables used

Status of LHC

- First stable beams are were produced in May
- 145 days of physics expected
- 2017 is a production year. Some challenges are to be faced to move towards HL-LHC era

See Matteo Solfaroli, LHCC 10 May, 2017, for details

LHC schedule Q1 + Q2

Machine check-out

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

LHC Schedule Q3 + Q4

	July				Aug					Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	3	10	17	24	II 31	7	14	들 21	28	4	11	18	25
Tu					hysic			hysic					
We	TS1			MD 2	cial p			cial p				TS2	
Th				INID 2	Spe			Spe		Jeune G			
Fr											MD 3		
Sa													
Su													

Electrons and photons

- Photon identification efficiency ~ 90%
- Photon energy resolution $\sim 1\%$ from Z to ee data

Events / (0.5 GeV) 2.5 fb⁻' (13 TeV) 0.08 ш Simulation (20 fb⁻¹ precision), $R_2 \ge 0.94$ CMS ₂^m0.07 Prompt reconstruction , $R_{a} \ge 0.94$ Preliminary Winter2015-2016 re-reconstruction, R ≥ 0.94 0.06 0.05 0.04 0.03 0.02 $Z \rightarrow ee$ 0.01 0¹ 0.5 1.5 2 2.5 Supercluster | n | Jalyaki Bhat ASUO MICCUNE, HOLA FUNC, 20, 2018 m_{ee} (GeV)

Jets

- Anti-KT with distance parameter 0.5
- CALO, JPT, PF
- PF jets clustered from PF candidate particles
- Resolution measured from MC and various energy balancing methods

- Constructed from PF candidates
- Correted for various detector effects

Number of events / 8 GeV

 10^{7}

 10^{6}

 10^{5}

 10^{4}

 10^{3}

data $\mathbf{Z} \rightarrow \mu \mu$

vv top

PFE

uncertainties

19.7 fb⁻¹ (8 TeV)

CMS
Muons

- 1-6% relative momentum resolution for pT<100GeV</p>
- > 10% at a TeV
- > 1% hadron to muon fake probability
- Single muon trigger rates (much) better than 90% above a few GeV

Tau efficiency

Particle Flow

- Reconstruct all stable particles in CMS detector by linking responses of subdetectors
 - Photon, electron, muon, charged and neutral hadrons
 - Resulting list of particles can be used as if they came from a MC generator
 - Composite objects like jets, taus, MET can be reconstructed from the "PF candidates"

6

charged hadrons reconstructed using PF algorithm

Taus: The HPS algorithm

π0's are reconstructed in ECAL as strips

Strips:

- ▶π0 -> γγ
- Photon conversion in the tracker material
- electron tracks bending in the magnetic field: broadening of the signal in the azimuthal direction
- A strip of 0.05 in η and 0.2 in ϕ is built

Mass is required to be consistent with π0

b-tagging efficiency

- The impact parameter (IP) of the track wrt the primary vertex is used to distinguish the decay product of the b hadron from the prompt tracks
- Algorithms:
 - Track counting: sorts tracks in a jet by decreasing value of IP significance
 - Jet probability (JP): uses estimate of the likelihood that all the tracks associated to the jet come from primary vertex
 - Jet B probability (JBP): same as JP, in addition, it gives more weight to the tracks with high IP significance

SUSY searches @ 13 TeV after 35 fb⁻¹

Only a selection of available mass limits. Probe *up to* the quoted mass limit for m ≈0 GeV unless stated otherwise

Satyaki Bhattacharya

CMS Z (II) backup 1

Inputs to BDT

- $|m_{\ell\ell} m_Z|$ (dilepton mass);
- *p*^{ℓ1}_T (leading lepton transverse momentum);
- *p*^{ℓ2}_T (subleading lepton transverse momentum);
- *p*^{*ℓℓ*}_T (dilepton transverse momentum);
- |η^{ℓ1}| (leading lepton pseudorapidity);
- $|\eta^{\ell 2}|$ (subleading lepton pseudorapidity);
- *E*^{miss}_T (missing transverse energy);
- $m_T(p_T^{\ell 1}, E_T^{\text{miss}})$ (leading lepton transverse mass);
- $m_T(p_T^{\ell 2}, E_T^{\text{miss}})$ (subleading lepton transverse mass);
- $\Delta \phi(\vec{p_T}^{\ell\ell}, \vec{p_T}^{\text{miss}})$ (azimuthal separation between dilepton and missing energy);
- $\Delta R_{\ell\ell}$ (separation between leptons); and
- $|\cos \theta_{\ell 1}^{CS}|$ (cosine of Collins–Soper angle for leading lepton).

CMS mono-photon @ 13 TeV

arXiv:1706.03794

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

Backgrounds to monophoton

rest

Wγ

on-collision

y+jet

ele misID

Multijet events with MET

Z(vv) + gamma

MC NNLO QCD

Z is invisible recoiling

against high pT photon

(DYRES) + NLO EWK

irreducible.

Jet fakes photon

Zγ

- Large brem from beam halo muon or cosmic muon
- Anomalous signal in ECAL barrel photosensors
- Gamma + jet gamma escapes, jet fakes photon/ jet mismeasured
- Single electron + MET (mostly single W)
- Electron misses pixel hit, identified as photon
 - W(lv) + gamma
 - MET from W decay + lepton escaping
 - MC NNLO QCD (DYRES) + NLO EWK

ATLAS Monophoton @ 13 TeV backup

Astro Meeting, IISER Pune, 25, 2018

Satyaki Bhattacharya

ATLAS monophoton backup

Table 2: Criteria for selecting events in the SRs and the numbers of events selected in data.

Event cleaning		Quality	and Primary v	ertex	
Leading photon	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta < 1.37 \text{ or } 1.52 < \eta < 2.37,$ tight, isolated, $ z < 0.25 \text{ m},$ $\Delta \phi(\gamma, E_{\rm T}^{\rm miss}) > 0.4$				
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{\Sigma E_{\mathrm{T}}}$	$> 8.5 \text{ GeV}^{1/2}$				
Jets	0 or 1 with $p_{\rm T} > 30$ GeV, $ \eta < 4.5$ and $\Delta \phi$ (jets, $E_{\rm T}^{\rm miss}$) > 0.4				
Lepton	veto on e and μ				
$E_{\rm T}^{\rm miss}$ [GeV]	SRI1 > 150	SRI2 > 225	SRI3 > 300	SRE1 150–225	SRE2 225–300
Selected events in data	2400	729	236	1671	493
Events with 0 jets	1559	379	116	1180	263
	SRI1	1muCR	2muCR	2eleCR	PhJetCR
Observed events	2400	1083	254	181	5064
Fitted Background	2600±160	1083±33	243±13	193±10	5064±80
$Z(\rightarrow \nu\nu)\gamma$	1600±110	1.7±0.2	_	_	81±6
$W(\rightarrow \ell \nu)\gamma$	390 ± 24	866±40	1.1±0.3	0.7 ± 0.1	163±9
$Z(\rightarrow \ell \ell)\gamma$	35±3	77±5	233±13	180 ± 10	13±1
γ + jets	248 ± 80	33±8	-	-	4451±80
Fake photons from electrons	199 ± 40	17±3	0.50 ± 0.13	0.09 ± 0.04	72±14
Fake photons from jets	152±22	88±19	7.9±3.8	12±5	284±28
Pre-fit background	2400±200	1025±72	218±15	181±13	4800±1000

ATLAS Z(II) backup

Final State	ee	$\mu\mu$
Observed Data	437	497
Signal		
$ZH \rightarrow \ell\ell + inv (BR_{H \rightarrow inv} = 30\%)$	$32 \pm 1 \pm 3$	34±1±3
DM ($m_{\text{med}} = 500 \text{ GeV}, m_{\chi} = 100 \text{ GeV}) \times 0.27$	$10.8 \pm 0.3 \pm 0.8$	$11.1 \pm 0.3 \pm 0.8$
Backgrounds		
qqZZ	$212 \pm 3 \pm 15$	$221 \pm 3 \pm 17$
ggZZ	$18.9 \pm 0.3 \pm 11.2$	$19.3 \pm 0.3 \pm 11.4$
WZ	$106 \pm 2 \pm 6$	$113 \pm 3 \pm 5$
Z + jets	$30 \pm 1 \pm 28$	$37 \pm 1 \pm 19$
Non-resonant- <i>ll</i>	$30 \pm 4 \pm 2$	$33 \pm 4 \pm 2$
Others	$1.4 \pm 0.1 \pm 0.2$	$2.5 \pm 2.0 \pm 0.8$
Total Background	$399 \pm 6 \pm 34$	$426 \pm 6 \pm 28$

Table 3: 95% CL upper limits on $BR_{H\to inv}$ for $m_H = 125$ GeV from the *ee*, $\mu\mu$, and combined *ee* + $\mu\mu$ channels. Both the observed and expected limits are given, and the 1σ and 2σ uncertainties on the expected limits are also presented.

	Exp. $BR_{H \to inv}$ Limit $\pm 1\sigma \pm 2\sigma$	Obs. $BR_{H \rightarrow inv}$ Limit
$ee + \mu\mu$	39% +17% +38% -11% -18%	67%
ee	51% +21% +49% -15% -24%	59%
μμ	48% +20% +46% -14% -22%	97%

ATLAS older papers

Photons	<u>http://arxiv.org/abs/1604.01306</u> (13 TeV) <u>Phys. Rev. D 91, 012008</u> (8 TeV)	
Heavy flavour quarks	Eur. Phys. J. C (2015) 75:92 (8 TeV)	
W and Z bosons	Hadronic decays: <u>ATLAS-CONF-2015-080</u> (13 TeV) <u>Phys. Rev. Lett 112, 041802</u> (8 TeV)	Leptonic W decays: <u>JHEP09 (2014) 037</u> (8 TeV) Leptonic Z decays: <u>PRD 90, 012004 (</u> 8 TeV)
Higgs bosons	H→bb: <u>ATLAS-CONF-2016-019</u> (13 TeV) <u>Phys. Rev. D 93, 072007 (</u> 8 TeV)	H→ _{¥¥} : <u>ATLAS-CONF-2016-011</u> (13 TeV) <u>Phys. Rev. Lett. 115, 131801</u> (8 TeV)

ATLAS reference for V(hadronic) + MET (Xuanhong Lou, EPS 2017)

- [1] ATL-PHYS-PUB-2015-033
- [3] arXiv:1212.3352
- [5] J. Phys. G 28 (2002) 2693–2704

[2] arXiv:1007.1727[4] arXiv:1507.00966

More details about the search for dark matter produced in association with a hadronically decaying vector boson at $\sqrt{s} = 13$ TeV with the ATLAS detector can be found at Phys. Lett. B 763 (2016) 251

ATLAS reference for V(hadronic) + MET (Xuanhong Lou, EPS 2017)

- [1] ATL-PHYS-PUB-2015-033
- [3] arXiv:1212.3352
- [5] J. Phys. G 28 (2002) 2693–2704

[2] arXiv:1007.1727[4] arXiv:1507.00966

More details about the search for dark matter produced in association with a hadronically decaying vector boson at $\sqrt{s} = 13$ TeV with the ATLAS detector can be found at Phys. Lett. B 763 (2016) 251

LHC DM models

- Two models of vector mediator
- Minimum Flavor violation

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q ,$$

$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q .$$

Mediator decay widths

$$\Gamma_{\text{vector}}^{\chi\bar{\chi}} = \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{1/2} \left(1 + 2z_{\text{DM}}\right) \,, \tag{2.3}$$

$$\Gamma_{\text{vector}}^{q\bar{q}} = \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4z_q\right)^{1/2} \left(1 + 2z_q\right) \,, \tag{2.4}$$

where $z_{\text{DM},q} = m_{\text{DM},q}^2 / M_{\text{med}}^2$ and the two different types of contribution to the width vanish for $M_{\text{med}} < 2m_{\text{DM},q}$. The corresponding expressions for the axial-vector mediator are

$$\Gamma_{\text{axial-vector}}^{\chi\bar{\chi}} = \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{3/2} , \qquad (2.5)$$

$$\Gamma_{\text{axial-vector}}^{q\bar{q}} = \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4z_q\right)^{3/2} \,. \tag{2.6}$$

The two models with a spin-0 mediator ϕ are described by

$$\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q , \qquad (2.7)$$
$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}\gamma_5q , \qquad (2.8)$$

where $y_q = \sqrt{2}m_q/v$ are the SM quark Yukawa couplings with $v \simeq 246$ GeV the Higgs vac-

Loop induced decays to gluons

$$\begin{split} \Gamma_{\rm scalar}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{8\pi} \left(1 - 4z_{\rm DM}^2\right)^{3/2} \\ \Gamma_{\rm scalar}^{q\bar{q}} &= \frac{3g_q^2 y_q^2 M_{\rm med}}{16\pi} \left(1 - 4z_q^2\right)^{3/2} \\ \Gamma_{\rm scalar}^{gg} &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm scalar}(4z_t) \right|^2 \\ \Gamma_{\rm pseudo-scalar}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{8\pi} \left(1 - 4z_{\rm DM}^2\right)^{1/2} , \\ \Gamma_{\rm pseudo-scalar}^{q\bar{q}} &= \frac{3g_q^2 y_q^2 M_{\rm med}}{16\pi} \left(1 - 4z_q^2\right)^{1/2} , \\ \Gamma_{\rm pseudo-scalar}^{gg} &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(4z_t) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \left| f_{\rm pseudo-scalar}(1 - 4z_q^2) \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{32\pi^3 v^2} \right|^2 \\ &= \frac{\alpha_s^2 g_q^2 M_{\rm med}^3}{3\pi^3 v^2} \\$$

2018

Direct detection: Rescaling

- Collider searches simplified model relic density calculation changes in mass-mass plane
- DD assumes relic density from one species saturates the cosmological density
- In case of multiple species rescaling of DD results needed to compare with mass-mass plots from LHC – not recommended.

Direct detection: Rescaling

- Collider searches simplified model relic density calculation changes in mass-mass plane
- DD assumes relic density from one species saturates the cosmological density
- In case of multiple species rescaling of DD results needed to compare with mass-mass plots from LHC – not recommended by LHC DM WG.

Mono Higgs

Indirect detection

AMS