Status of CMB

the promise of an Indian collaborative space mission

Astro-Particle Physics meet

CGPA-IFTHEP@ IISER Pune

Feb. 25, 2018

Tarun Souradeep IUCAA, Pune On behalf of CMB-Bharat (Indian CMB consortium)

CMB Anisotropy & Polarization

CMB temperature

 $T_{cmb} = 2.725 \text{ K}$

-200 μ K < Δ T < 200 μ K

 $\Delta T_{rms} \sim 70 \mu K$

 $\Delta T_{pE} \sim 5 \ \mu \ K$

 $\Delta T_{PB} \sim 10-100 \ nK$

Temperature anisotropy T + two polarization modes E&B Four CMB spectra : C_{I}^{TT} ,

 $C_l^{EE}, C_l^{BB}, C_l^{TE}$

a second with the second second

Parity violation/sys. issues: C_l^{TB} , C_l^{EB}

CMB anisotropy measurements 1st, 2nd and into the 3rd decade

Courtesy: Soumen Basak

CMB Temperature at Planck Frequencies

Credit: ESA, HFI & LFI consortia

The 2015 Planck view of the sky

CMB Polarization at Planck Frequencies

Foreground for CMB anisotropy

Foreground for CMB Polarization

Planck CMB sky map

Truly all-sky !!! Only 3% of sky replaced by constrained realization

300

→ PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Filtered at 5 degrees

Full sky map Filtered at 5 degrees

Filtered at 20 arcminutes

CMB Foregrounds : Rich A&A science

SZ clusters from Planck

Planck SZ catalog

Planck sky maps

Statistics of CMB

CMB Anisotropy Sky map => Spherical Harmonic decomposition

$$\Delta T(\theta,\phi) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta,\phi)$$

$$\left\langle a_{lm} a_{l'm'}^* \right\rangle = C_l \delta_{ll'} \delta_{mm'}$$

Gaussian Random field => Completely specified by angular power spectrum $D_l = l(l+1)C_l$:

 D_l : Power in fluctuations on angular scales of ~ π/l radians

Planck Angular power spectrum

Planck CMB Polarization spectra

Planck CMB Polarization spectra

Acoustic physics CMB Angular power spectrum

CMB@IUCAA: CMBAns Boltzmann code by Santanu Das

Multi-D Joint Posterior distribution $\mathcal{P}(\text{ parameters } | \mathcal{C}_{\ell})$

Baryons: $\Omega_b h^2$ Cold Dark Matter: $\Omega_m h^2$ Hubble constant : H_0 Reionization Depth : τ Primordial fluctuations – Spectral index: Π_s Amplitude: A_s

(S Das & TS : JCAP 2014)

Cosmological Parameters

6-Parameter ΛCDM

Parameter	Parameter <i>Planck</i> TT+lowP+lensing	
$\overline{\Omega_{ m b}h^2} \ \ldots \ \ldots \ \ldots \ \ldots \ \Omega_{ m c}h^2 \ \ldots \ $	0.02226 ± 0.00023 0.1186 ± 0.0020	1% 1.7%
$100\theta_{\rm MC}$	1.04103 ± 0.00046	0.04%

'Standard' cosmological model: Flat, ACDM with nearly Power Law (PL) primordial power spectrum

 0.01027 ± 0.00014

 $r_{\rm drag}$.

.

1.4%

Paradigm of Hot & Dense early Universe

i.e., 'Big Bang' model

COBE-FIRAS results strongly constrain any Energy input into the CMB in the not-so-early universe (z<10⁵)

Paradigm of CMB flucs: Acoustic phenomena pre-recombination Plasma universe

0.4 0.2 0.0 -0.2 -0.4

Paradigm of Structure formation? - Backbone of `precision' cosmology

Gravitational Instability

Mildly Perturbed universe at z=1100

Present universe at z=0

Cosmic matter content

 Ω_{tot} Ω_{b} Ω_{DM} Ω_{Λ} H_0

Weak lensing: Light deflects due to gravity

Projected Lensing potential from Planck

01 2)#(8%, 6)

• r # 748,5?#)012 k# / L%?'95 \$?7(,%,)89''.7\$)H''%?5(#88) $\Delta T(\hat{n}) - \Delta T(\hat{n} + \overline{d}(\hat{n}))$) $\overline{d}(\hat{n}) = \overline{D} \leftarrow (\hat{n}) \leftarrow -- K\#(8\%,)4'5\#(+7+)$)))))>-4\$7+r1:)A7+9#)'.)/ $\theta_{s}(\hat{Q})$])7''\$*%)) Planck is the first experiment to provide a full-sky reconstruction of the projected mass, along every line of sight back to the surface of last scattering. *P*; %247. #84 '84 #N!

Projected Lensing power spectrum

Paradigm of Inflation in the Early Universe ? -necessary to seed structure

Early Universe in CMB

- **The Background universe**
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

Spin characteristics: (Scalar) Density perturbation

- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Status of Inflationary models

cted

Fig. credit: kicphubs.uchicago.edu

Early Universe in CMB

- **The Background universe**
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

- Spin characteristics: (Scalar) Density perturbation ... cosmic (Tensor) Gravity waves !?!
- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Planck Surveyor Satellite

European Space Agency: Launched May 14, 2009 HFI completed Jan 2012

4TH GENERATION MISSION PROPOSALS/ CONCEPTS

ESA

- * COrE -> 2010
- PRISM -> 2013

Comprehensive large scale mission

- * COrE+ -> 2015
- * CORE -> 2017

NASA

- * EPIC/CMBpol -> 2009
- * PIXIE -> 2017

Spectroscopic study over several decades of frequency

CMB Probe / PICO -> 2020

JAXA

* LiteBIRD -> 2008

Has not yet been selected. Currently undergoing a Phase A study

Next CMB space mission: Why ?

- Cosmic Microwave Background (CMB) measurements have been transformational for Cosmology
- Planck mission (ESA) extracted ≈100% of CMB temperature information (> 1000 × information compared to COBE 1994, > 10 × WMAP)

But extracted only a small fraction (10%) of the rich **CMB polarisation information available** (and much less for specific measures)

And, no significant addition on CMB spectral information since COBE

Scientific promise

•Reveal signature of quantum gravity and ultra-HEP in the very early universe

•Improve probe of cosmological model by a factor of > 10 million

•Map all dark matter and most baryons in the observable universe

•Unique probe of the 'entire' thermal history of the universe

Planck Focal Plane

💽 esa 🐼

Coolest Satellite

- H₂ Sorption cooler
 - LFI FPU to < 20K
 - pre-cool lower stages
- ⁴He J-T cooler
 - HFI FPU and LFI reference loads to < 5K
- **Dilution cooler**
 - HFI bolometers to 0.1K

Cryogenic Cooling chain

Strawman concept : CORE (ESA-M5)

Designed for Ariane-6 but seems well suited for a GSLV Mk-III launcher towards a Sun-Earth L2 orbit

ISRO-ESA CMB mission Opportunity

- A next generation CMB mission is challenging, but doable
- Necessarily global cooperation: No single country/agency has all expertise, technology, resources, manpower to build it
- Post-Planck, European CMB community proposed the Cosmic Origins Explorer (CORE)
- **CORE designed to be a "near-ultimate" CMB polarisation mission** The proposed mission concept did not pass the initial technical and programmatic screening by ESA in January 2017.
- The main issue is cost within an M-class envelope.

ESA encouraged the CORE consortium to consider a joint proposal with a major international partner.

Indian contribution can be significant or even dominant with right partnerships and timely investments

Indian response

- A cross-institutional consortium of interested cosmologists (CMB-Bharat set up formally on Jan 9th at ISRO HQ meet has ~ 50 members about 14 institutions/laboratories)
- Meeting organized at ISRO-HQ on Jan 8-9, 2018 to demonstrate an Indian community capable of taking on the science.
- Meeting of ESA-CORE proposal PI & co-PI with Director, SSPO, ISRO in Oct 2018.
- ISRO announcement of opportunity (AO) for Astronomy missions & payloads with deadline Apr 16, 2018.
- Active working groups of CMB-Bharat now towards responding to AO

Scientific Objective

A "near-ultimate" Cosmic Microwave Background polarisation survey

Options: * Enhanced spectral characterisation * Pointed observatory mode

A "Capture-all" high value science and legacy CMB mission
•Extract all cosmological information available in the CMB
•A unique window of opportunity: matched aspirations
•Balanced profile of S&T impact and returns

The Scope & Challenge

Capabilities achieved within India

- Service module
 - Design, fabrication, assembly, testing
- Launch to L2
- Tracking & control
- Orbit maintenance
- Science data downlink
- Data products and analysis
- Mission planning and operation

Capabilities achieved with modest planned investments

- Telescope and Optics
 - Design, fabrication, assembly, testing
 - Reflectors, baffling
 - Reimaging optics, filters
- Science Payload
 - Design, assembly, testing

Capabilities achieved with long-term planned investments

- Broadband photon-noise-limited sensors & readout for CMB frequency bands
- Cryogenic coolers at 100mK in space

Benefits of making medium- and long-term strategic investments

- Build upon capabilities in ISRO, and enhance experimental physics efforts at academic institutions in India.
- Expand nanofabrication, MEMS and cryogenics capabilities as well as people trained to use and exploit these resources, which can have very wide applications in Indian science community.
- Quantum sensor technologies developed for CMB frequency bands can be extended to other bands in astronomy (X-ray, gamma ray), spectroscopy in various bands, particle physics applications and even to quantum computing.
- Developing Labs and Test Infrastructure will be useful in the long term for training young scientists and engineers.

CMB-Bharat Working groups

Cluster Physics from CMB:

Lead: Subhabrata Majumdar (TIFR) Members: Suvodip Mukherjee, Dhiraj Hazra, K.P. Singh, Siddharth Savyasachi Malu, Abhirup Datta, Priyanka Singh

Foregrounds and CIB:

Lead: Tuhin Ghosh (NISER) Members: Rajib Saha, Soumen Basak, Pavan K. Aluri, Moumita Aich, Ranajoy Banerji, Aditya Rotti, Abhirup Datta, Pravabati Chingangbam, Sandeep Rana (List Here)

Instrument science:

Lead: Zeeshan Ahmed (Stanford Univ) Members: Aafaque R Khan, Rahul Datta, Mayuri S.Rao, Ritoban Thakur

Inflation:

Lead: L. Sriramkumar (IIT Madras)

Members: Dhiraj Hazra, Anshuman Maharana, Urjit Yajnik, Raghu Rangarajan, Supratik Pal, Anjan Ananda Sen, Subodh Patil, Rajeev Kumar Jain, Gaurav Goswami, V. Sreenath, Debika Chowdhury, Pravabati Chingangbam, Moumita Aich (List here)

CMB-Bharat Working groups

Cosmological parameters:

Lead: Dhiraj Hazra (APC, Paris → NISER?,...)

Members: Suvodip Mukherjee, Rajib Saha, Urjit Yajnik, Supratik Pal, Anjan Ananda Sen, Rajeev Kumar Jain, Ujjaini Alam, Barun Kumar Pal, Arindam Chatterjee, H K Jassal, Priyanka Singh

Lensing:

Lead: Suvodip Mukherjee (CCA, NY) Members: Dhiraj Hazra, Anjan Ananda Sen, Supratik Pal, Aditya Rotti, Shabbir Shaikh, Rajorshi Sushovan Chandra, Barun Kumar Pal, Ashish Meena, Priyanka Singh

Simulations and Data Pipelines:

Lead: Jasjeet Singh Bagla (IISER Mohali) Members: Soumen Basak, Tuhin Ghosh, Shamik Ghosh, Ranajoy Banerji, Rahul Kothari, Aditya Rotti, Abhirup Datta, Nishikanta Khandai

Spectral Distortions:

Lead: Rishi Khatri (TIFR) Members: Suvodip Mukherjee, Anjan Ananda Sen, Aditya Rotti, Subodh Patil, Rajeev Kumar Jain, Biman Nath

CMB-Bharat Working groups

Statistics: Isotropy and Gaussianity:

Lead: Aditya Rotti (U Manchester)

Members: Suvodip Mukherjee, Dhiraj Hazra, Rajib Saha, Urjit Yajnik, Shamik Ghosh, Pavan K. Aluri, Subodh Patil, Rahul Kothari, Nidhi Pant, Shabbir Shaikh, Rajorshi Sushovan Chandra, Pravabati Chingangbam, Moumita Aich, Sandeep Rana

Systematics:

Lead: Ranajoy Banerji (U. Oslo) Members: Abhirup Datta, (List Here)

Synergy with Astrophysics:

Dust in ICM/IGM, science at ~1.3 TeraHz Members: K. P. Singh, Jasjeet Singh Bagla, Priyanka Singh

Synergy with ground experiments:

Lead: Mayuri Sathyanarayana Rao Members: Abhirup Datta, Siddharth Malu

Most CMB space mission Planck launch 2009

Indian mission launch ?

LVM3.X

ND

SRO

Thank you !!!