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This being a review talk, the references I am giving are to
books/review articles

* Inflation and String Theory (CUP)
Baumann and McAllister

* String Inflation After Planck 2013
Burgess, Cicoli and Quevedo

* Cosmological Moduli and the Post-Inflationary Universe:
A critical review
Kane, Sinha and Watson



* Options: form the perspective of low energy eftective field
theory having symmetries or trying to tune the potential.

* Whether they can be realised is a calculable question from
the point of the UV complete theory

* For the symmetries, we need to understand the fate of the
symmetries in a UV complete theory, the existence
of higher dimensional operators that spoil the symmetry:

* For tuning, we need to check if the necessary cancellations
can take place by varying the underlying parameters of the

UV theory.

* Computing these operators is not easy, but in many cases
an estimate sufhices.
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* Inflation and string theory
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* Moduli dynamics and inflationary predictions



Inflation and String Theory

* Simplest models of inflation involve a scalar field rolling
down a potential. To get exponential expansion for a
sufficiently long epoch, slow roll conditions need to be
satisfied.

Sy ()«

* The potential has to be flat in Planck units !

* The vacuum energy is positive. In general, scalar masses are not
stable against loop corrections

An = O(1)
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* Various possibilities to realise the standard model sector.
In the cases in which, the inflation decays primarily to
the SM sector (as one might want for a simple reheating
scenario, followed by a standard thermal history). One has a
eta problem arising from the coupling

1
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* String theory has no couplings, all couplings are set by
vacuum expectation values of fields : Moduli fields.

* At tree level Moduli fields are massless, as long as these flat
directions are present, it is impossible to realise inflation.

* Going beyond tree level, moduli fields acquire masses. The
potentials generated for them are often flat, moduli are
good candidate inflatons.

* Moduli parametrise the shape and size of the extra
dimensional geometry e.g. size of a hole in the extra
dimensions. Relations between the field ranges.



* Example: Fibre inflation models, in the regime inflation takes
place

Vo

Vi~ 10/3

(3 —4e ") with k= —=

&w

* ¢ rolls from higher to lower values. But form of potential
very different for larger values of ¢ . Very difficult to achieve

60 e-foldings.



Inflation, Moduli and Cosmology

* From the very early days of model building in supergravity
models in was realised that
inflation + moduli fields
can lead to cosmological timeline distinct from the
standard one.

modular cosmology
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Cosmology and Moduli

* Starting point of the analysis moduli dynamics during
inflation.

* Analysis of dynamics during inflation gives, for My S Hin

At the end of inflation the modulus (¢ has VEV
(’5 ,

y = —— <1
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Cosmology and Moduli

Thus just after reheating, energy density has two
components

* Radiation: To which the inflaton has dumped its
energy density.

* Modulus: Potential energy due to displacement.
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* As the universe expands time average of energy density

falls off as

1
pmodulus(t) X 3

a’(t)

Cosmological evolution of cold moduli particles.

* Quickly dominates over energy density present in the form
of radiation

* Modulus domination continues until decay of modulus at

167TM§1
Tmod ~ 3
mSO

the characteristic lifetime for decay via their Planck
suppressed interactions.



Modular Cosmology Conventional Cosmology

Inflation Inflation
Rehez%ting Rehéi;lting
Radia%ion Domination Radiﬁtion Domination
Modlﬁus Domination ;
Today

Reheating (after modulus decay)

.

Radiation Domination

Today
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Inflation and Inhomogeneities

* Inhomogeneities are a result of freezing of quantum
fluctuations at the time of horizon exit; k/a ~ H.

k ~ 0.05 Mpc™" for CMB observations by the
PLANCK satellite.

Properties of the universe

at this stage determine the
A properties of the inhomogeneities
of the CMB.

| |

CMB Inflation
mode Ends

freeze
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It is conventional to keep track of the point of
freezing by the number of e-folding between
freezing and end of inflation.

Ning = In A{fend)
I ———T I a (tfreeze)
V(x) Ninf
CMB Inflation
mode Ends

freeze

>

X
For e.g. m*x*® potential (similar expressions for all models)

ne=1—2/N r=8/N

Given a potential we need the value of NVjng to extract
predictions '



Inflation and Inhomogeneities

e Howis /Vi,q determined ?

Observed ¢ INFLATION ) Energy Density

Inhomogeneties at an early time

* More precisely;

2 p
4= 5o (371
3m2r Mél

* 0 - Energy density of universe at the time of horizon exit
of mode relevant for CMB observations.

* 7" - Strength of gravity waves. i



Inflation, Inhomogeneities and Energy Densities

* An early time and today’s energy densities known. This
implies a consistency condition

Any history we ascribe must be such that the early
time energy density evolves to the energy density today.

Horizon exit Inflation

of CMB modes]\f.nﬂ Ends Today

| = | Post-inflationary Epoch. |
f !

Energy density at Energy density
horizon exit, Pk (from inhomogeneities). today, Pa

Post-inflationary Epoch consists of reheating followed

by thermal history in conventional cosmologies.
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This motivates the usual range of 50-60 for Ninf
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We obtain

', 'Nmodulus' (1 3th1)th1+ (1 3th2) hy AT+ -Inr+ = 1L
. 4 4 4 4\ pend

The number of e-folding during modulus
domination.

V161 M, Y2 )

My

Nmodulus S 3 1I1 (

Y = The initial displacement in Planck Units

(generic estimate from EFT Y ~ O(1))

L
M,

m, The post-inflationary mass of the modulus

Since the dependence is on In(Mp/m,,) this can significantly
bring down the value of Nj,g . .
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Moduli stabilisation gives the necessary inputs

* The initial displacement of the modulus.

 The inflaton width.

Carrying this out for Kahler Moduli Inflation.

Ninﬂ ~ 45

Exhibits the importance of moduli dynamics for making
inflationary predictions. To confront the next generation
experiments we need to know N;,gq with accuracy:

AN =~ 5 My, o 101 GeV
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Having an era of early matter domination also

* The initial displacement of the modulus.

 The inflaton width.

Carrying this out for Kahler Moduli Inflation.
N infl ~ 45

Exhibits the importance of moduli dynamics for making
inflationary predictions. To confront the next generation
experiments we need to know N;,gq with accuracy:

AN =~ 5
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Modular cosmology also has implications for dark matter.

* Thermal overproduction before the epoch of
early matter domination.

* Dilution upon reheating

. )1/2thus is directly related

The dilution factor is given by (
to the shift in Ni,q
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Conclusions

Constructing models of inflation in string theory poses many
challenges

* Higher dimensional operators

* Field Ranges
Can lead to rich connections:
Scale of inflation  Initial field displacement ~ Ning

Moduli masses Field Ranges Nature of dark matter
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