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A REVIEW



This being a review talk, the references I am giving are to
books/review articles
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• Inflation and String Theory  (CUP)
   Baumann and McAllister

• String Inflation After Planck 2013 
   Burgess, Cicoli and Quevedo

• Cosmological Moduli and the Post-Inflationary Universe:
    A critical review 
    Kane, Sinha and Watson



• Options: form the perspective of low energy effective field 
    theory having symmetries or trying to tune the potential.
   

• For the symmetries, we need to understand the fate of the
    symmetries in a UV complete theory, the existence
    of higher dimensional operators that spoil the symmetry.

• Computing these operators is not easy, but in many cases
    an estimate suffices.

• Whether they can be realised is a calculable question from
    the point of the UV complete theory

• For tuning, we need to check if the necessary cancellations
    can take place by varying the underlying parameters of the
    UV theory.



Outline
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• Inflation and string theory

• Moduli dynamics and inflationary predictions

• Higher dimensional operators

• Inflation in a UV complete theory

• Field Ranges of candidate inflatons



Inflation and String Theory
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• Simplest models of inflation involve a scalar field rolling
   down a potential. To get exponential expansion for a 
   sufficiently long epoch, slow roll conditions need to be
   satisfied.

• The potential has to be flat in Planck units !

• The vacuum energy is positive. In general, scalar masses are not 
stable against loop corrections 
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• Options: form the perspective of low energy effective field 
    theory having symmetries or trying to tune the potential.
   

• For the symmetries, we need to understand the fate of the
    symmetries in a UV complete theory, the existence
    of higher dimensional operators that spoil the symmetry.

• Computing these operators is not easy, but in many cases
    an estimate suffices.

• Whether they can be realised is a calculable question from
    the point of the UV complete theory

• For tuning, we need to check if the necessary cancellations
    can take place by varying the underlying parameters of the
    UV theory.
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• Various possibilities to realise the standard model sector.
    In the cases in which, the inflation decays primarily to
    the SM sector (as one might want for a simple reheating
    scenario, followed by a standard thermal history). One has a 
     eta problem arising from the coupling
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• String theory has no couplings, all couplings are set by
    vacuum expectation values of fields : Moduli fields.

• At tree level Moduli fields are massless, as long as these flat
    directions are present, it is impossible to realise inflation.
  

• Going beyond tree level, moduli fields acquire masses. The 
potentials generated for them are often flat, moduli are 

    good candidate inflatons.

• Moduli parametrise the shape and size of the extra 
    dimensional geometry e.g. size of a hole in the extra
    dimensions. Relations between the field ranges. 
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• Example: Fibre inflation models, in the regime inflation takes 
place 
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2p
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•       rolls from higher to lower values. But form of potential
very different for larger values of      . Very difficult to achieve
60 e-foldings.
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Inflation, Moduli and Cosmology

• From the very early days of model building in supergravity 
   models in was realised that
                             inflation + moduli fields 
can lead to cosmological timeline distinct from the 
standard  one.

10

  modular cosmology
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Cosmology and Moduli
•  Starting point of the analysis moduli dynamics during 
     inflation.  

• Analysis of dynamics during inflation gives, for

At the end of inflation the modulus       has VEV
    , 

m' . Hinfl

Y =
'̂

Mpl
. 1



• Radiation: To which the inflaton has dumped its 
   energy density. 

Thus just after reheating, energy density has two
components 

• Modulus: Potential energy due to displacement.

Cosmology and Moduli
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• As the universe expands time average of energy density 
   falls off as

Cosmological evolution of cold moduli particles.  

•   Quickly dominates over energy density  present in the form
     of radiation

the characteristic lifetime for decay via their Planck 
suppressed  interactions.
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• Modulus domination continues until decay of modulus at
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Inflation 

Reheating 

Radiation Domination
 
Modulus Domination  

Reheating (after modulus decay)

Radiation Domination

Today

Inflation 

Reheating 

Radiation Domination

Today

Modular Cosmology Conventional Cosmology



k ⇡ 0.05 Mpc�1                                 for CMB observations by the 
PLANCK satellite. 

�

V(�)
 Inflation 
    Ends

CMB 
mode 
freeze

Properties of the universe 
at this stage determine the 
properties of the inhomogeneities 
of the CMB.

Inflation and Inhomogeneities
•  Inhomogeneities are a result of freezing of quantum
     fluctuations at the time of horizon exit;                . k/a ⇡ H
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 It is conventional to keep track of the point of 
 freezing by the number of e-folding between  
 freezing and end of inflation.

Ninfl
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Ninfl = ln
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m2�2 For  e.g.             potential (similar expressions for all models)

 Given a potential we need  the value of             to extract   
predictions

Ninfl
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Inflation and Inhomogeneities

•  How is            determined ? 

•    - Energy density of  universe at the time of horizon exit
         of  mode relevant for CMB observations.

•    - Strength of gravity waves.
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•  More precisely, 

   Observed
Inhomogeneties

 Energy Density
 at an early time

INFLATION

Ninfl



 Inflation, Inhomogeneities and Energy Densities
•  An early time and today’s energy densities known. This
    implies a consistency condition

Any  history we ascribe must be such that the early 
time energy density evolves to the energy density today. 

Energy density at 
horizon exit,      (from inhomogeneities).

Energy density 
today,     .  

Horizon exit 
of CMB modes Today

Inflation 
EndsNinfl Post-inflationary Epoch.

⇢k ⇢0

Post-inflationary Epoch consists of reheating followed
by thermal history in conventional cosmologies.
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10 Planck Collaboration: Constraints on inflation

HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+tensor model from Planck combined with other data
sets. The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

CL for the WMAP 9-year data and is further excluded by CMB
data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the

95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
entropy generation priors allowing N⇤ < 50 could reconcile this
model with the Planck data.

This motivates the usual range of 50-60 for  Ninfl
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We obtain

The number of e-folding during modulus
domination. 

Y =
'̂

Mpl
The initial displacement in Planck Units 

m' The post-inflationary mass of the modulus 

(generic estimate from EFT                   )Y ' O(1)

Since the  dependence is on                          this can significantly
bring down the value of          .

ln(Mpl

�
m')

Ninfl
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  Change the
    50 - 60
      range

10 Planck Collaboration: Constraints on inflation

HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+tensor model from Planck combined with other data
sets. The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

CL for the WMAP 9-year data and is further excluded by CMB
data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the

95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
entropy generation priors allowing N⇤ < 50 could reconcile this
model with the Planck data.

 Modulus
mass input
     for
inflationary
predictions
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Moduli stabilisation gives the necessary inputs

• The initial displacement of the modulus.

• The inflaton width.

  Carrying this out for  Kahler Moduli Inflation.
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Ninfl ⇡ 45

  Exhibits the importance of moduli dynamics for making 
  inflationary predictions. To confront the next generation
  experiments we need to know           with accuracy:  

�N ⇡ 5

Ninfl

m' ' 1013 GeV



Having an era of early matter domination also 

• The initial displacement of the modulus.

• The inflaton width.

  Carrying this out for  Kahler Moduli Inflation.
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Ninfl ⇡ 45

  Exhibits the importance of moduli dynamics for making 
  inflationary predictions. To confront the next generation
  experiments we need to know           with accuracy:  

�N ⇡ 5

Ninfl



Modular cosmology also has implications for dark matter. 
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The dilution factor is given by             thus is directly  related
to the shift in Ninfl

• Thermal overproduction  before the epoch of
     early matter domination. 

• Dilution upon reheating 
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Conclusions

Constructing models of inflation in string theory poses many
 challenges 

Can lead to rich connections:
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• Higher dimensional operators  

• Field Ranges

Ninfl

 Nature of dark matterModuli masses Field Ranges

Scale of inflation Initial field displacement


