Single-top-quark production in standard modes (ATLAS + CMS)

11th International Workshop on Top Quark Physics

R.Moles-Valls on behalf of the ATLAS and CMS Collaborations Bad Neuenahr, 16-21 September 2018

Single-top-quark production

Why is the single top quark interesting?

- Important test of the SM
 - Wtb vertex: IV_{tb}I
 - Top-quark mass measurement

• Powerful probe for BSM physics:

- Production modes sensitive to new physics
- Wtb anomalous couplings
- FCNC in production

Constrain PDFs

- Sensitive to u/d-quark ratio in PDFs
- Test of *b*-quark PDFs

• Tune MC generators

 Data-predictions comparison via unfolded distributions

Background for Higgs/SUSY searches

Single-top-quark rare processes covered in next talk

R.Moles-Valls

Single-top-quark results with ATLAS & CMS

▶ATLAS and CMS results @8TeV and @13TeV

fully/ partially covered in this talk	topposed in the second se		Run: 206962 Event: 6666799 2012-07-14 11:35:35 CEST Ut=606cr http://atlas.ch pt=640ev pt=95cr
8TeV	 CMS: <u>JHEP06(2014)090</u> ATLAS: <u>EPJC77(2017)531</u> 	 CMS: <u>PRL.112.231802</u> ATLAS: <u>JHEP01(2016)064</u> Combination: <u>ATLAS-CONF-2016-023</u> 	 CMS: <u>HEP09(2016)027</u> ATLAS: <u>PLB756(2016)228–246</u>
13TeV	 CMS: <u>CMS-PAS-TOP-17-011</u> ATLAS: <u>JHEP04(2017)086</u> 	 CMS: arxiv:1805.07399(inclusive) ATLAS: JHEP01(2018)063 (inclusive) EPJC78(2018)186 (differential) arXiv:1806.04667 (interference) 	no results @13TeV (but hopefully soon!)

R.Moles-Valls

t-channel @ 13TeV

- *t*-channel signature (single lepton decay):
 - One isolated lepton (e,µ)
 - e: p_T >35GeV, $I\eta I$ <2.1 and isolation requirement (I_{rel} < 0.06)
 - μ : p_T>26GeV, lnl<2.4 and isolated requirement ($I_{rel} < 0.06$)
 - additional lepton veto: $e(p_T > 10 \text{GeV})$ or $\mu(p_T > 10 \text{GeV})$ + relaxed isolation
 - Two high-p_T Anti-k_t jets (p_T > 40GeV) and I η I<4.7
 - one b-tagged jet (40% eff, light mistag 0.1%)
 - Missing transverse energy (MET) from the neutrino
 - e: MET > 30GeV
 - ▶ *μ*: m_T(*W*)> 50GeV

- Mostly estimated from MC
- QCD from data (fit to m_T(W) and MET)

q

g

POWHEG 2.0 (4FS) PYTHIA8.2 CTUETP8M1 NNPDF3.0

• Different categories (n-jets, m-btags)

Event yields in the Signal Region (SR)

Process	μ^+	μ^{-}	e ⁺	e-
Top quark pair production	81172 ± 13480	81572 ± 13517	64839 ± 10331	65205 ± 10185
tW	8755 ± 1799	8762 ± 1843	6837 ± 1406	6885 ± 1387
W/Z+jets	38199 ± 12334	33373 ± 10568	23907 ± 8064	21494 ± 6811
QCD	6732 ± 3241	6713 ± 3235	11282 ± 5430	10605 ± 5109
Single top quark <i>t</i> -channel	23628 ± 2918	14574 ± 1883	15103 ± 1840	9395 ± 1188
Total expected	158486 ± 18870	144994 ± 17658	121969 ± 14374	113584 ± 13400
Observed	166446	151440	124857	116206

jets

BDT to separate signal from background

- BDT trained in 2j1b (separately for e and μ)
- 10(11) variables for $e(\mu)$

Variable	Description
Light-quark jet $ \eta $	Absolute value of the pseudorapidity of the light-quark
	jet
Dijet mass	Invariant mass of the light-quark jet and the b-tagged jet
	associated to the top quark decay
Top quark mass	Invariant mass of the top quark reconstructed from the
	lepton, the neutrino and the b-tagged jet associated to the
	top quark decay
ΔR (lepton, b jet)	ΔR between the momentum vectors of the lepton and the
	b-tagged jet associated to the top quark decay
$\cos(\theta^*)$	Cosine of the angle between the lepton and the light-
	quark jet in the rest frame of the top quark

Most important 5 variables

t-channel @ 13TeV

 BDT applied to SR and CR (for different charge/flavour lepton)

Maximum Likelihood fit

- Simultaneous fit on 12 BDT distributions (e-mu, 2j1b, 3j1b, 3j2b, lepton charge)
- CR used to constrain tt
- Free parameters:
 - μ for *t*-quark cross-section
 - μ for \overline{t} -quark cross-section
 - μ for $R_{t-ch} = \sigma(t)/\sigma(\bar{t})$
- Two fit procedures (correlations included):
 - 1. $\mu(\bar{t})$ and $\mu(R_{t-ch})$
 - 2. $\mu(\bar{t})$ and $\mu(t) \rightarrow$ reproduces R_{t-ch}

		$\Delta R/R$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(\bar{t})$
	PDF <i>t</i> channel	1.4	0.7	0.6
	PS-scale <i>t</i> channel	1.1	12.5	13.8
	ME-PS scale matching <i>t</i> channel	0.2	1.5	1.8
Systematic uncertainties	$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> channel	0.1	6.3	6.2
• Systematic uncertainties	QCD normalization	2.1	1.7	3.8
Profiled uncertainties	JES	1.9	6.6	8.4
	tt modeling and normalization	1.9	0.8	3.2
 Included in the fit as NP 	Top quark $p_{\rm T}$	1.2	4.0	5.2
	MC sample size	0.9	1.8	0.5
External uncertainties (signal modelling)	$\mu_{\rm R}/\mu_{\rm F}$ scale	0.8	1.0	0.3
 Analysis redone with varied templates 	Pileup	0.4	1.4	1.8
	Muon and electron efficiencies	0.3	0.1	0.5
 Uncertainty as 0.5⁻1up-downi 	JER	0.2	0.4	0.7
1 + m = 2 + 1 + (1 + 0 + 5)	b tagging	0.2	1.2	1.4
• Luminosity $(\pm 2.5\%)$	PDF	0.1	0.1	0.2
	Unclustered energy	0.1	0.4	0.6
	W/Z+jets normalization	0.1	0.9	0.9
	tW normalization	< 0.1	0.2	0.2

t-channel $\sigma_{t-chan,t} = 136.3 \pm 1.1(stat) \pm 3.4(prof) \pm 19.4(ext) \pm 3.4(lumi)pb (15\%)$ \bar{t} -channel $\sigma_{t-chan,\bar{t}} = 82.7 \pm 1.1(stat) \pm 2.7(prof) \pm 12.6(ext) \pm 2.1(lumi)pb (16\%)$ Rt-ch $R_t = 1.65 \pm 0.02(stat) \pm 0.03(prof) \pm 0.03(ext)pb (3\%)$

t-channel @ 13TeV

ATLAS *t*-channel cross-sections, V_{tb} and R_t measured at 13TeV @3.2fb⁻¹

cross-sections

$$\sigma_{t-chan,t} = 156 \pm 5(stat) \pm 27(syst) \pm 3(lumi)pb$$

 $\sigma_{\text{t-chan},\bar{t}} = 91 \pm 4(\text{stat}) \pm 18(\text{syst}) \pm 2(\text{lumi})\text{pb}$

V_{tb} and R_t

 $|f_{LV}V_{tb}| = 1.07 \pm 0.09$

 $R_{\rm t} = 1.72 \pm 0.09 ({\rm stat}) \pm 0.18 ({\rm syst})$ (Rt plots @8TeV and @13 TeV shown in the backup)

R.Moles-Valls

tW production @ 13 TeV

ATLAS and CMS have measured the **inclusive**, **fiducial** and **differential** *tW* cross-section

(presented in Top2017 and also in the YSF Top2018)

- *tW*-channel signature (dilepton decay):
 - Two opposite charged isolated leptons
 - Missing transverse energy (MET)
 - One central high-p⊤ jet (b-tagged jet)

Cuts	CMS	ATLAS
Leptons	eµ OS (p⊤>20GeV)	ee/µµ/eµ OS (p⊤(1)>27GeV)
Jets	p⊤ > 30GeV (loose jets 20 <p⊤<30gev)< td=""><td>p⊤ > 25GeV</td></p⊤<30gev)<>	p⊤ > 25GeV
b-tag	70% eff.	77 eff.
MET	—	triangular cut (MET & m _{ll})

tW inclusive CMS

- S-B separation: BDT in the 1j1b and 2j1b
- ML fit to the BDT distribution in 1j1b/2j2b and $p_T(j_2)$ in 2j2b

 $\sigma_{tW} = 63.1 \pm 6.6 pb$ (11%)

Source	Uncertainty (%)
Experimental	
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
t $\bar{t} \mu_{\rm R}$ and $\mu_{\rm F}$ scales	2.5
tW $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
tt	2.8
VV	0.4
Drell–Yan	1.1
Non-W/Z leptons	1.6
tĪV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic	
(excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1

tW differential ATLAS

- S-B separation: BDT in the 1j1b (BDT cut > 0.3 (S:B=1:2)
- Back. subtracted data **unfolding to particle level**
- Unfolded distributions for: E(b), E(IIb), m_T(IIvvb), m(I₁b),m(IIb),m(I₂b)

• *tW* interfere with $t\bar{t}$ beyond LO:

- Standard calculations factorise both processes (narrow-width approx.)
 Different interference schemes used to estimate the impact of this effect
- Size of the interference depends on the phase space \rightarrow large impact on searches

• The NLO corrections to the LO *tW* amplitude:

$$|A_{tW}|^{2} = |A_{t\bar{t}}|^{2} + |A_{tWb}|^{2} + 2Re\{A_{t\bar{t}}^{*} \cdot A_{tWb}\}$$

ti @LO tw@NLO interference

• Different alternatives used to handle the interference @NLO

- Diagram Removal (DR): JHEP07(2008)029
 - removes all tt diagram contributions, also interference (Att=0)

$$\mid A_{tW} \mid_{DR}^{2} = \mid A_{tWb} \mid^{2}$$

- Diagram Removal 2 (DR2): EPJC77(2017)34
 - removes $t\overline{t}$ LO contribution but keep interference term
- Diagram Subtraction (DS): JHEP07(2008)029
 - cancels the resonant $t\bar{t}$ contribution with local sub. term
 - includes interference

→ 4lbb (lvlvbb): *EPJC76(2016)691*

• implemented in PowHeg, no narrow-width approx., interference is automatically handled

 $|A_{tW}|^2_{DR2} = |A_{tWb}|^2 + 2Re\{A^*_{t\bar{t}} \cdot A_{tWb}\}$

$$|A_{tW}|_{DS}^2 = |A_{t\bar{t}} + A_{tWb}|^2 - C_{2t}$$

Different alternatives used to handle the interference @NLO

 $|A_{tW}|^{2} = |A_{t\bar{t}}|^{2} + |A_{tWb}|^{2} + 2Re\{A_{t\bar{t}}^{*} \cdot A_{tWb}\}$

tW@NLO

Diagram Removal (DR): JHEP07(2008)029

tt @LO

• The NLO corrections to the LO *tW* amplitude:

- removes all tt diagram contributions, also interference (Att=0)
- Diagram Removal 2 (DR2): *EPJC77(2017)34*
 - removes tt LO contribution but keep interference term
- Diagram Subtraction (DS): JHEP07(2008)029
 - cancels the resonant $t\bar{t}$ contribution with local sub, term
 - includes interference
- ➡ 4lbb (lvlvbb): EPJC76(2016)691
 - implemented in PowHeg, no narrow-width approx., interference is automatically handled

New approach to test interference models: differential cross-section measurements as a function of a variable sensitive to interference effects

$$_{V}|_{DR2}^{2} = |A_{tWb}|^{2} + 2Re\{A_{t\bar{t}}^{*} \cdot A_{tWb}\}$$

 $|A_{tW}|^{2}_{DR} = |A_{tWb}|^{2}$

$$|A_{tW}|_{DS}^2 = |A_{t\bar{t}} + A_{tWb}|^2 - C_{2t}$$

 $|A_{tV}|$

interference

- Discriminant to exploit the differences between both processes: m(bW)
 - In tī: m²(bW) ~ m²t
 - In tWb: one pair is off from mt

WWbb (dilepton) is considered as signal

Lepton used as a proxy for the W: m(bl)

Discriminant:

$min\{max\{m(b_1I_1), m(b_2I_2)\}, max\{m(b_1I_2), m(b_2I_1)\}\}$

For tī:

- When *b*-jet/lepton correctly assigned: $m(bl) \le m_t$
- Correct assignment not known a priory:
 - min{max{m(b_1l_1),m(b_2l_2)},max{m(b_1l_2),m(b_2l_1)} $\leq m_t$

For tWb:

R.Moles-Valls

- \bullet One m(bl) smaller than $m_t,$ the other could be larger
 - min{max{m($b_1 I_1$),m($b_2 I_2$)},max{m($b_1 I_2$),m($b_2 I_1$)} $\geq m_t$

ATLAS

• Event selection in the SR

Selection	Signal
Signal leptons	= 2 (Tight leptons with p _T >28GeV, lnl<2.5)
Lepton charges	opposite
Lepton flavor	all: ee/µµ/eµ
$ m_{\ell\ell} - m_Z < 15 \text{ GeV}$	veto $+ m(II) > 10 GeV$ for same-flavour lepton pair
b-tagged jets 60% eff. WP	= 2 (p _T > 25GeV, IηI<2.5)
b-tagged jets 85% eff. WP	= 2 (veto third loose-ID <i>b</i> -jet)

• WWbb signal accounts for the 95% of the events after the selection

• Background:

- ttV and VV+jets (MC based)
- non-prompt and misidentify leptons (CR using same-charge lepton pair)
- Z+jets (SF derived from a CR)
- $t\bar{t}$ + heavy-flavour (SF derived from a CR)

Control regions	Z+b(b)	tt+HF jets	• tt with extra b-jets can populate region for high values of m(lb)
Selection	Z CR	3b CR	$\frac{1}{10} = 101 \text{ mgr values of m(10)}$
Signal leptons Lepton charges Lepton flavor $ m_{\ell\ell} - m_Z < 15 \text{ GeV}$ b-tagged jets 85% eff. WP b-tagged jets 60% eff. WP	= 2 opposite $ee/\mu\mu$ require = 2 = 2	= 2 opposite - veto ≥ 3 ≥ 3	(background) u~ (background) u ~ v untagged u ~ v ~ v untagged
Odata-MC normalisation f ATLAS Vs=13 TeV, 36.1 fb ⁻¹ Other %Ta Table of the second	actor	• data-	MC normalisation factor derived
R.Moles-Valls			17

- Final discriminant at reconstructed level
 - More tW events in the tail
 - Prediction for both tW interference schemes (DR and DS) shown

Systematic uncertainties on the unfolded distribution

IvIvbb(PWH+PY8)

data well described across the full range

PWH+PY8 (DR/DS)

 good agreement in the core of the distributions (< 200 GeV)
 In the tail:

▶ DR/DS predictions diverge▶ consistent with data at ~2σ

PWH+PY8 (DR2)

clearly under predicts the data in the tail

PWG+HW++

Sample used to estimate the parton shower uncertainty
 Most significant below the mt

PWH+PY6 (DR/DS)

 PWH+PY6 used for unfolding
 DR/DS predictions using PY6 show the same trend as PY8

Summary

t-channel production @13TeV (CMS)

- Measurement for top/anti-top *t*-channel cross-section
- Precise R_{t-ch} (~3% unc.) \rightarrow good agreement with most of the predictions

tW process measured inclusively (CMS/ATLAS) and differentially (ATLAS)

First studies on $t\bar{t}+tW$ in a region sensitive to the interference (ATLAS)

- \bullet DR-DS differ each other but within 2σ of the data
- IvIvbb (including interference) shows good agreement over the full range

Systematic uncertainties

• Selection:

- isolated e and μ with OS and p_T> 20GeV
- Jets with pT > 30GeV
- Loose jets 20GeV < p_T < 30GeV</p>
- b-tagging (70% efficiency)

• Signal-Back separation: BDT in the 1j1b and 2j1b

Most important variables in 1j1b region: pT(loose-jets), pT^{sys}, pT(b-jet), pT(e)+pT(mu)/HT, #loose jets, centrality...

tW inclusive CMS

^{(10%} uncertainty)

Source	Uncertainty (%)
Experimental	4
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
tt $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	2.5
tW $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
tī	2.8
VV	0.4
Drell–Yan	1.1
Non-W/Z leptons	1.6
tīV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic	10.1
(excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1

tW differential ATLAS

- Inclusive measurement with 3.2fb⁻¹ (JHEP(2018)2018:63)
- Differential measurements performed with 36fb⁻¹ (EPJC78(2018)186)
 - Signal-Background separation
 - BDT in 1j1b SR
 - BDT cut > 0.3 (S:B 1:5(1:2) before(after)cut)
 - Back. subtracted data unfolding to particle level
 - D'Agostini iterative method
 - Iterations chosen to keep bias & stat. error low
 - Unfolded distributions for
 - E(b), E(IIb), m_T(IIvvb), m(I₁b),m(IIb),m(I₂b)
 - Largest syst. uncertainties
 - tW and tt modelling
 - statistics

More details in Carls's talk

R.Moles-Valls

tW differential ATLAS

R.Moles-Valls

Observable	E(b)		$m(\ell_1 b)$		$m(\ell_2 b)$		$E(\ell\ell b)$		$m_{\rm T}(\ell\ell\nu\nu b)$		$m(\ell\ell b)$	
Degrees of freedom	4		5		3		5		3		5	
Prediction	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	р	χ^2	p
Powheg+Pythia 6 (DR)	4.8	0.31	5.7	0.34	2.6	0.45	8.1	0.15	2.0	0.56	4.0	0.55
Powheg+Pythia 6 (DS)	5.0	0.29	6.1	0.30	2.6	0.46	9.1	0.11	2.4	0.49	4.4	0.50
aMC@NLO+Herwig++	5.6	0.23	5.4	0.37	2.4	0.49	8.7	0.12	1.8	0.61	3.6	0.61
Powneg+Herwig++	6.2	0.18	8.1	0.15	2.3	0.52	11.0	0.05	2.0	0.57	5.2	0.40
Powheg+Pythia 6 radHi	4.8	0.30	5.3	0.38	2.5	0.48	7.9	0.16	1.9	0.60	3.7	0.60
Powheg+Pythia 6 radLo	5.0	0.29	5.8	0.33	2.6	0.45	8.4	0.14	2.1	0.56	4.0	0.55

• Overall good modelling by all generators

- Small difference between radLo/radHi
- Small difference between Diagram removal (DR)- Diagram Subtraction (DS)
- PowHeg+Herwig++ disfavoured in some bins

• MC tends to be softer than data (specially in E(IIb))

- LO Madgraph samples generated with and without interference
- Used by searches to estimate the effect size when DR/DS difference is large
- MadGraph allow for a direct comparison of DR1 vs DR2
 - Poor modelling of DR2 due to the interference and not the choice of generator