tt+bb at ATLAS and CMS

Alexander Khanov Oklahoma State University On behalf of the ATLAS and CMS collaborations

Outline

- Motivation
- State-of-the-art theoretical predictions
- Experimental approach
- Results
- Prospects

Latest experimental results:

- ATLAS-CONF-2018-029 (July 2018): Vs=13 TeV, L=36.1/fb
- CMS-TOP-16-010, published in Phys.Lett. B776 (2018) 355: vs=13 TeV, L=2.3/fb

Motivation

- Measurements of tt+jets (both inclusive and differential production cross-section) are an important test of QCD predictions
 - among these, tt+bb poses a particular challenge to QCD theory due to non-negligible mass of b-quarks
- ttH: direct measurement of Higgs coupling to the heaviest elementary particle – top quark, the crucial test of the Standard Model
 - dominant SM Higgs decay H→bb, largest statistics in the ttH→ttbb channel
 - − ttH→ttbb suffers from large background from tt+b-jets, better understanding of ttbb is needed
- Various SM channels and BSM searches have tt+b-jets as their dominant background
 - four top production
 - − gluino pair production $GG \rightarrow ttbb+MET$
 - heavy charged Higgs production $t(b)H^+$, $H^+ \rightarrow tb$

Theoretical predictions (1)

- Sherpa + OpenLoops (2014)
 - NLO ttbb, massive b, 4FS
 - cross-section uncertainties 20—40% (depending on fiducial cuts)
 - sensitive to g→bb in the parton shower

Phys. Lett. B734 (2014) 210

- PowHel + Pythia (Sep 2017)
 - NLO+PS, massive b, 4FS
 - found reasonable agreement with massless 5FS calculations
 - mass, PDF uncertainties shown to be small compared to scale uncertainty

Theoretical predictions (2)

- Powheg-Box (Feb 2018)
 - massive b, 4FS
 - matrix element computed with OpenLoops
- Confirmed findings of Sherpa studies:
 - tt+b-jet is dominated by final state
 g→bb splitting (both for two and one resolved b-jet)
 - scale uncertainties at fixed order NLO are 25—30%, dominated by renormalization scale variations
 - shower effects 10% in ttbb xs, 30% in m_{bb} , ΔR_{bb}

Experimental approach

- Select (reasonably) pure tt using double b-tagging
 - tt→dileptons+jets (ATLAS, CMS): pure but lower statistics tt→lepton+jets (ATLAS): better overall uncertainty, (in 50% of the cases) additional c from W decays
- Categorize events based on the number of b-tagged jets
- Construct the discriminating variable that is sensitive to additional HF
 - good candidates are third and fourth highest b-tagging weights (the output of the multivariate b-tag discriminant)
- Fit the distribution of discriminating variable in data to a weighted sum of simulated templates
 - extract the number of tt+b, tt+c, tt+light events and convert it to production cross-section

Preselection, ATLAS

- dileptons (eµ only): exactly one e and one µ of opposite charge, ≥2 jets, ≥2 b-tagged (ε_b=77%) jets
- I+jets: exactly one e or μ , \geq 5 jets, \geq 2 b-tagged (ϵ_{b} =60%) jets

Preselection, CMS

- ee/μμ: two leptons, of opposite charge, |m_{II}-m_Z|>15 GeV, p_T^{miss}>30 GeV
- eµ: exactly one e and one μ of opposite charge
- \geq 4 jets, \geq 2 b-tagged (ϵ_{b} ~60--70%) jets

8

tt+bb extraction, ATLAS

- Consider 5 b-tagging discriminant bins with average b-tagging efficiencies of 100—85%, 85—77%, 77—70%, 70—60%, <60%
- 1D fit using 3rd b-jet discriminant for dileptons, 2D fit using 3rd and 4th b-jet discriminants for l+jets
- MC events are categorized based on the number of particle level b/cjets: ttb: ≥3b, ttc: <3b+≥1c (eµ), <3b+≥2c (l+jets), ttl: everything else

- eµ: combine c and light
- I+jets: fit b/c/l separately

tt+bb extraction, CMS

- 2D fit using b-jet discriminators for 3rd and 4th jets
- MC events are categorized as ttbb/ttcc/ttbj/ttLF based on the number of particle level b/c- jets in addition to the two b-jets from top decays
- For the fit, combine c and light flavor (too similar to discriminate) and constrain ttbb/ttbj from MC

Results

- ATLAS: report fiducial cross-sections: measured distributions are unfolded to the particle level to correct for detector resolution / efficiency / acceptance
 - avoid unfolding to parton level (identifying the origin of bjets) as this may lead to significant modeling uncertainties
 - also report differential unfolded distributions: b-jet multiplicity, H_T , H_T^{had} , jet p_T , m_{bb} , p_T^{bb} , ΔR_{bb} for two highest p_T b-jets and two closest b-jets
- CMS: report cross-sections in both visible and full phase space
 - the latter to facilitate comparisons to NLO calculations or between different decay channels
 - also report the $\sigma_{ttbb}/\sigma_{ttjj}$ ratio

Results, ATLAS (1)

• Fiducial cross-sections:

Channel	analysis	measured cross-section [fb]				
lepton + jets lepton + jets	$\sigma_{tt+\geq 1b}$ $\sigma_{tt+\geq 2b}$	$2450 \pm 40 \text{ (stat)} \pm 359 \pm 11 \text{ (stat)} \pm$	690 (syst) 61 (syst)			
еµ	$\sigma_{tt+\geq 1b}$	$181 \pm 5 (stat) \pm$	24 (syst)			
eμ	$\sigma_{tt+\geq 2b}$	27 ± 3 (stat) \pm	7 (syst)			

Dominant systematic uncertainties: MC modeling, b-tagging, jet energy scale

Comparison to Sherpa+OpenLoops, uncertainties due to varying renormalization and factorization scales by x 0.5—2 and PDF uncertainties, ttH/ttV subtracted from data

Results, ATLAS (2)

- Example: differential cross-sections vs leading jet p_{T} and $m_{bb}, \Delta R_{bb}$ for two closest b-jets
 - note that for events with 3 b-jets, one or both of the two closest b-jets may come from top decays

Results, CMS

• Visible and full phase space results:

Pł	nase space	$\sigma_{\overline{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}}}$ [pb]	$\sigma_{t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$
	SM (POWHEG)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	Measurement	$4.0 \pm 0.6 \pm 1.3$	$184\pm 6\pm 33$	$0.022 \pm 0.003 \pm 0.006$
	SM (POWHEG)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

- Leading systematic uncertainties: MC modeling, btagging, jet energy scale
- Total systematic uncertainty: 34% (σ_{ttbb}), 19% (σ_{ttjj}), 28% (the ratio)
- The $\sigma_{ttbb}/\sigma_{ttjj}$ results for visible and full phase space are consistent and have similar stat/syst uncertainties

Systematic uncertainties

Source Fiducial cross-section phase space			Source	$\sigma_{t\bar{t}b\bar{b}}$ (%)	$\sigma_{t\bar{t}jj}$ (%)	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ (%)			
	$e\mu$		lepton + jets		Pileup	0.4	< 0.1	0.4	
	> 3h	> 4h	> 5i > 3b	> 6i > 4h	JES & JER 🗧	7.8	7.4	2.6	
	unc. (%)	unc. (%)	unc. (%)	unc. (%)	b tag (b quark flavour)	19	4.7	19	
Data statistics	27	9.0	17	3.0	b tag (c quark flavour) 🗖	14	1.3	14	
Data statistics	2.1	7.0	1.7	5.0	b tag (light flavour)	14	9.8	9.7	
Luminosity	2.1	2.1	2.3	2.3	Ratio of tībbā and tībj	2.6	0.5	2.6	
Jet	2.6	4.3	3.6	7.2	Background modelling	3.8	3.5	1.6	
<i>b</i> -tagging	4.5	5.2	17	8.6	$t\bar{t}c\bar{c}$ fraction in the fit	5.2	1.9	4.8	
Lepton	0.9	0.8	0.8	0.9	Lepton identification	3.0	3.0	_	
Pileup	2.1	3.5	1.6	1.3	MC generator	94	62	30	
<i>ttc</i> fit variation	5.9	11	-	-	O^2 scale	2.0	2.0	1.0	
Non- <i>tt</i> bkg	0.8	2.0	1.7	1.8	Q scale	2.0	2.0	1.0	
Detector+background total syst.	8.5	14	18	12		15	9.9	~ 0.1	
Parton shower	9.0	6.5	12	6.3	Ffficiency (trcc fraction)	-	1.3	13	
Generator	0.2	18	16	8.7	Top $p_{\rm T}$ modeling	0.8	0.3	0.5	
ISR/FSR	4.0	3.9	6.2	2.9	Luminosity	27	27	_	
PDF	0.6	0.4	0.3	0.1	Total uncertainty	34	19	28	
$t\bar{t}V/t\bar{t}H$	0.7	1.4	2.2	0.3		54	17	20	
MC sample statistics	1.8	5.3	1.2	4.3					
$t\bar{t}$ modelling total syst.	10	20	21	12	CMS				
Total syst.	13	24	28	17	🗕 🗕 🛏 mai	n uncert	tainties		
Total	13	26	28	17					
				reduced in the ratio					

ATLAS

Alexander Khanov, OSU

Summary

- Measurements of tt+bb are important and need to be better understood
- At the current theoretical level of understanding, the experimental results are already competitive in terms of uncertainties
- Main experimental systematic uncertainties are MC modeling, btagging, and jet energy scale, all of those very challenging
- Starting to put together a survey of differential distributions to be fed back to theory
- Need to think of best ways to present the results, e.g. discriminate between b-jets from top and non-top (done by CMS for 8 TeV)
- Combined measurement of ttbb / ttcc / ttc is another challenge

Backup

tt+bb extraction, CMS: 2d templates

9/18/18

Definitions of fiducial/visible space

- ATLAS: definition of fiducial volume in terms of particle level objects:
 - eµ: exactly one e and one µ + ≥3 (≥4) b-jets for $\sigma_{tt+\geq 1b}$ ($\sigma_{tt+\geq 2b}$)
 - − l+jets: exactly one e or μ + ≥5 (≥6) jets + ≥3 (≥4) b-jets for $\sigma_{tt+≥1b}$ ($\sigma_{tt+≥2b}$)
 - both leptons and jets have $|\eta| < 2.5$, $p_T > 25$ GeV
- CMS: definition of visible space in terms of particle level objects:
 - exactly two leptons (e/ μ), \geq 4 jets + \geq 2 b-jets
 - leptons: p_T>20 GeV, |η|<2.4, jets: p_T>20 GeV, |η|<2.5</p>
- For both experiments, b/c-jets are defined using B/Chadron ghost matching

Differential cross-sections: CMS, 8 TeV

- Eur. Phys. J. C 76 (2016) 379
- MC: MadGraph+Pythia

