

11th International Workshop on Top Quark Physics September 17, 2018

Measurements of the inclusive $t \bar{t} \mbox{ cross section}$ at the ATLAS and CMS experiments

<u>Matteo Defranchis</u>, Deutsches Elektronen-Synchrotron (DESY) on behalf of the ATLAS and CMS Collaborations

Deutsches Elektronen-Synchrotron (DESY)

outline of this presentation

introduction

 motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $\rm t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~\rm TeV$

preliminary CMS results with 2016 dataset

- $\sigma_{t\bar{t}}$ measurement in di-lepton channels
- combined measurement of $\sigma_{
 m t\bar{t}}$ and $m_{
 m t}^{
 m MC}$ in $e\mu$ channel

$t\overline{t}$ production mechanisms at LHC

- gluon fusion ($\simeq 90\%$)
- $q\bar{q}$ annihilation ($\simeq 10\%$)

fixed order predictions at NNLO+NNLL at $m_t = 172.5 \text{ GeV} (\text{Top}++v2.0, \text{TWiki})$

\sqrt{s} [TeV]	$\sigma_{ m tar t}$ [pb]	uncert. [%]
7	177.3	6.8
8	252.9	6.5
13	831.8	6.1

 \rightarrow uncertainty dominated by PDF+ $\!\alpha_{\rm S}$

gluon fusion

top pair production cross section: motivation

- can be used to constrain gluon PDF and extract QCD parameters like $m_{\rm t}$ and α_S
- sensitive to physics BSM, e.g. t̃ production (see talk by Juan Gonzalez)
- main **background** of several searches and measurements
- $\simeq 15/{\rm s}~{\rm t\bar{t}}$ pairs produced at LHC
- ⇒ unique opportunity to study this process in detail and exploit its potential

- + $t\bar{t}$ production is well understood process on a wide range of energy
- first 13 TeV results with 35.9 fb⁻¹ (2016) presented in this talk - by CMS Collaboration

top pair production cross section: general procedure

• observed $\sigma_{t\bar{t}}^{vis}$ is extrapolated to full phase space to get total cross section $\sigma_{t\bar{t}}$ \rightarrow introduces model dependence

$$\begin{aligned} \sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}} &=& \frac{N_{\mathrm{data}} - N_{\mathrm{bkg}}}{\epsilon_{\mathrm{sel}} \cdot L_{\mathrm{int}}} \\ \sigma_{\mathrm{t}\bar{\mathrm{t}}} &=& \frac{\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}}}{A_{\mathrm{sel}} \cdot \mathrm{BR}} \end{aligned}$$

"golden" decay channels for $\sigma_{t\bar{t}}$ measurement

- di-leptonic channels, in particular $e\mu$
- I+jets channels $(I = e, \mu)$
- \rightarrow all-hadronic channel penalized by JES, modelling and b-tagging uncertainties

introduction

 motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $\rm t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~\rm TeV$

preliminary CMS results with 2016 dataset

- $\sigma_{
 m t\bar{t}}$ measurement in di-lepton channels
- combined measurement of $\sigma_{
 m t\bar{t}}$ and $m_{
 m t}^{
 m MC}$ in $e\mu$ channel

measurements of $\sigma_{ m t\bar t}$ at 7 and 8 TeV

$\sqrt{s} = 7 { m TeV}$

ATLAS+CMS Preliminary LHCtopWG	σ _{if} summary, (s = 7 TeV	Nov 2017
NNLO+NNLL PRL 110 (2013) 252004		
$m_{wp} = 1/2.5 \text{ GeV}, \alpha_{s}(M_{2}) = 0.118\pm0.001$		
scale uncertainty	total stat	
scale & PDP & d _s uncertainty	σ. ± (stat) ± (svst) ± (lumi)	
	1	
ATLAS, I+jets	179 ± 4 ± 9 ± 7 pb	L _{re} =0.7 fb ⁺
ATLAS, dilepton (*)	173 ± 6 ⁺¹⁴ ₋₁₁ ^{+ 8} ₋₇ pb	L_10.7 fb1
ATLAS, all jets (*)	167 ± 18 ± 78 ± 6 pb	L ₁₀ =1.0 fb ⁻¹
ATLAS combined	177 ± 3 ^{* 8} ± 7 pb	L ₁₀ =0.7-1.0 fb ⁻¹
CMS, I+jets (*)	164 a 3 a 12 a 7 pb	L _{ef} =0.8-1.1 fb ⁻¹
CMS, dilepton (*)	170 ± 4 ± 16 ± 8 pb	L _a =1.1 fb ⁴
CMS, τ _{nad} +μ (*)	149 ± 24 ± 26 ± 9 pb	L _{ef} =1.1 fb ⁺
CMS, all jets (*)	136 a 20 a 40 a 8 pb	L _{ef} =1.1 fb ⁻¹
CMS combined	166 ± 2 ± 11 ± 8 pb	L ₁₀ =0.8-1.1 fb ⁻¹
LHC combined (Sep 2012) LHC top WG	173 ± 2 ± 8 ± 6 pb	L _{ef} =0.7-1.1 fb ⁻¹
ATLAS, I+jets, b→Xµv →	165 ± 2 ± 17 ± 3 pb	L_64.7 (b ⁺
ATLAS, dilepton eµ, b-tag	182.9 ± 3.1 ± 4.2 ± 3.6 pb	L ₁₀ =4.6 fb ⁻¹
ATLAS, dilepton eµ, NE_T^100	181.2 ± 2.8 **/ ± 3.3 pb	L_=4.6 fb ⁻¹
ATLAS, That+jets	194 ± 18 ± 46 pb	L ₁₀ =1.7 fb ⁻¹
ATLAS, all jets	168 ± 12 + 57 ± 7 pb	L _{ef} =4.7 fb ⁻¹
ATLAS, That H	183 ± 9 ± 23 ± 3 pb	L ₁₀ =4.6 fb ⁻¹
CMS, I+jets	161.7 ± 6.0 ± 12.0 ± 3.6 p	L 5.0 fb1
CMS, dilepton eµ Heri	173.6 ± 2.1 ^{+4.5} ± 3.8 pb	L_1=5.0 fb1
CMS, T _{had} +I	143 = 14 = 22 = 3 pb	L_==2.2 fb1
CMS, The Hots	152 ± 12 ± 32 ± 3 pb	L_10.9 fb1
CMS, all jets	139 ± 10 ± 26 ± 3 pb	L ₁₄ =3.5 fb ⁺
(*) Superreded by results shown below the line		
	NNPDF3.0 JHEP 04 (2015) 04	0
	MMHT14 EPJ C75 (2015) 5	
	CT14 PRD 93 (2016) 033005	
	ABM12 PRD 89 (2015) 054028 [a ₄ (M ₂) = 0.113]	
	, ha si i la si sha sa s	
		050
50 100 150	200 250 300	350
o _{ti} [pb]		

$\sqrt{s} = 8 \text{ TeV}$

ATLAS measurement in I+jets channel at 8 TeV

Eur. Phys. J. C 78 (2018) 487

- exactly one electron or muon, \geq 4 jets, \geq 1 b-tagged jet
- events split in 3 disjoint regions (different sensitivities to backgrounds and systematics + constrain b-tagging efficiencies)
 - **1** SR1: \geq 4 jets, 1 b-tag **2** SR2: 4 jets, 2 b-tags \rightarrow very pure in $t\bar{t}$
 - **3** SR3: > 4 jets, > 2 b-tags (excluding SR2)
- simultaneous fit of $\sigma_{t\bar{t}},$ b-tagging efficiencies and global jet energy scale factor
- NN using kinematic variables used to separate backgrounds in SR1 and SR3
- m(jj) from W in SR2, sensitive to JES

 $\sigma_{
m t\bar{t}} = 248.3 \pm 0.7 \, ({
m stat}) \pm 13.4 \, ({
m syst}) \pm 4.7 \, ({
m lum}) \, {
m pb}$

 \rightarrow limited by PDF in extrapolation (high-x gluon)

status of $t\bar{t}$ cross section measurements at 13 TeV

wide range of measurements by ATLAS and CMS in different decay channels

- all measurements performed with $\leq 3.2~{\rm fb}^{-1}$ from 2015 LHC run
- measurements in $e\mu$ and lepton+jets channels are outstanding
- ATLAS benefits from higher integrated luminosity and reduced lepton ID uncertainties
- overall comparable precision between the two experiments

common limitation

• uncertainty on integrated luminosity ($\simeq 2.3\%$ for both experiments)

likelihood fit with systematic uncertainties as nuisance parameters \rightarrow constrained *in-situ*

- events split in 44 orthogonal categories of jet and b-tagged jet multiplicity, lepton charge and lepton flavour
 - 1, 2, 3, ≥ 4 jets
 - 0, 1, \geq 2 b-tagged jets
- m_{lb}^{min} distribution used to discriminate $t\bar{t}$ from backgrounds (W+jets, QCD multi-jet)
- dependence of $m_{
 m lb}^{
 m min}$ on $m_{
 m t}$ taken into account

main systematic uncertainties

- W+jets normalization (1.6 %)
- b-jet identification efficiency (1.3 %)

$$\begin{split} \sigma_{t\bar{t}} &= 888 \pm 2\,(\text{stat}) \pm^{26}_{28}\,\,(\text{syst}) \pm 20\,(\text{lum})\,\text{pb} \\ \sigma^{vis}_{t\bar{t}} &= 208.2 \pm 0.4\,(\text{stat}) \pm^{5.5}_{4.9}\,\,(\text{syst}) \pm 4.8\,(\text{lum})\,\text{pb} \end{split}$$

JHEP 09 (2017) 051

result used to extract top pole mass using $\mathsf{Top}{++}$

$$m_{
m t}=170.6\pm2.7\,{
m GeV}$$

Phys. Lett. B761 (2016) 136

- select events with exactly 1,2 b-tags
- simultaneously determine b-tagging efficiency from data → reduce uncertainty

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1-C_b\epsilon_b) + N_1^{bkg}$$
$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{bkg}$$

express number of events in each b-tag multiplicity category in terms of $\sigma_{t\bar{t}}$ and

- **1** b-tagging efficiency ϵ_b
- 2 residual correlation between two jets C_b
- **3** efficiency of selecting $e\mu$ in $t\bar{t}$ event $\epsilon_{e\mu}$

 $\sigma_{t\bar{t}} = 818\pm8 \,(\text{stat})\pm27 \,(\text{syst})\pm19 \,(\text{lum})\pm12 \,(\text{beam}) \,\text{pb}$

Uncertainty (inclusive $\sigma_{t\bar{t}}$)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ [%]	
Data statistics	0.9	
tī NLO modelling	0.8	
tt hadronisation	2.8	
Initial- and final-state radiation	0.4	
$t\bar{t}$ heavy-flavour production	0.4	
Parton distribution functions	0.5	
Single-top modelling	0.3	
Single-top/tī interference	0.6	
Single-top Wt cross-section	0.5	
Diboson modelling	0.1	
Diboson cross-sections	0.0	
Z+jets extrapolation	0.2	
Electron energy scale/resolution	0.2	
Electron identification	0.3	
Electron isolation	0.4	
Muon momentum scale/resolution	0.0	
Muon identification	0.4	
Muon isolation	0.3	
Lepton trigger	0.2	
Jet energy scale	0.3	
Jet energy resolution	0.2	
b-tagging	0.3	
Misidentified leptons	0.6	
Analysis systematics	3.3	
Integrated luminosity	2.3	
LHC beam energy	1.5	
Total uncertainty	4.4	10/18

$\sigma_{ m t\bar{t}}$ to σ_Z ratio by ATLAS at 13 TeV

JHEP 02 (2017) 117

result in $e\mu$ channel used to extract the $\sigma_{\rm t\bar{t}}$ to σ_Z ratio at 13 TeV

- cancellation of systematics
- σ_Z measured at sub-percent level (excluding integrated luminosity)
- sensitive to gluon-to-quark PDF ratio
- measurement of σ_Z ($Z \rightarrow \ell \ell$) fully synchronized with $t\bar{t}$ lepton selection (trigger, visible phase space)
- careful evaluation of correlations improves cancellation of systematics

$$\sigma_Z = 779 \pm 3 \text{ (stat)} \pm 6 \text{ (syst)} \pm 16 \text{ (lum)} \text{ pb}$$

 $\sigma_Z^{\text{NNLO}} = 744 \stackrel{+22}{_{-28}} \text{ (tot)} \text{ pb}$

first measurement at 5.02 TeV by CMS

first ever measurement at 5.02 TeV

- low pile-up run from 2015 (PU \simeq 1.4)
- integrated luminosity of 27.4 pb⁻¹
- e[∓]µ[±], µ⁺µ[−] and l+jets final states
 0 di-lepton: cut&count
 0 l+jets: fit to b-jet categories
- limited by statistical uncertainty

$$\sigma_{t\bar{t}} = 69.5 \pm 6.1 \,(\text{stat}) \pm 5.6 \,(\text{syst}) \pm 1.6 \,(\text{lum}) \,\text{pb}$$

 $\sigma_{t\bar{t}}^{\text{NNLO}} = 68.9 \pm \frac{1.9}{2.3} \,(\text{scale}) \pm 2.3 \,(\text{PDF}) \pm \frac{1.4}{1.0} \,(\alpha_{\text{S}}) \,\text{pb}$

- excellent agreement with prediction
- used to constrain gluon PDF at high momentum fraction
- \rightarrow moderate improvement in uncertainty

JHEP 03 (2018) 115

CMS observation of $\mathrm{t}\bar{\mathrm{t}}$ production in pPb collisions at 8.16 TeV

Phys. Rev. Lett. 119, 242001 (2017)

- 174 nb $^{-1}$ at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$ (2016)
- I+jets channels considered ($I = e, \mu$)
- probe of nuclear PDF at high Bjorken-x

strategy

- likelihood fit of m(j, j') from W decays
- categories of b-tags (0, 1, \geq 2)
- simultaneously with b-tagging efficiency and global jet energy scale factor

results

- significance of $t\bar{t}$ signal above 5σ
- leading syst: b-tagging efficiency (13%)

$$\begin{split} \sigma_{t\bar{t}}^{\mu + \mathrm{jets}} &= 44 \pm 3\,(\mathrm{stat}) \pm 8\,(\mathrm{syst})\,\,\mathrm{nb} \\ \sigma_{t\bar{t}}^{e + \mathrm{jets}} &= 56 \pm 4\,(\mathrm{stat}) \pm 13\,(\mathrm{syst})\,\,\mathrm{nb} \end{split}$$

Deutsches Elektronen-Synchrotron (DESY)

outline of this presentation

introduction

• motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$

preliminary CMS results with 2016 dataset

- $\sigma_{t\bar{t}}$ measurement in di-lepton channels
- combined measurement of $\sigma_{
 m t\bar{t}}$ and $m_{
 m t}^{
 m MC}$ in $e\mu$ channel

measurement performed with two different approaches:

- a) inclusive $\mathrm{t}\bar{\mathrm{t}}$ cross section at fixed top mass (172.5 GeV)
 - simultaneously in $\mathrm{e^+e^-}$, $\mathrm{e^\pm}\mu^\pm$ and $\mu^+\mu^-$ channels
- \rightarrow push the measurement in the di-lepton channel to the **precision** regime by exploiting statistical power of 2016 dataset
- b) simultaneous measurement of $\sigma_{t\bar{t}}$ and top MC mass $(m_t^{
 m MC})$
 - performed in $e^{\mp}\mu^{\pm}$ channel only
- \rightarrow cross section determined at optimal mass point

method: template fit to distributions of final state observables

- systematic uncertainties treated as **nuisance parameters** and constrained in the visible phase space (with exception of luminosity)
- events categorized in **bins of jet and b-tag multiplicities** in order to constrain modelling uncertainties and b-tagging efficiencies
- ${\scriptstyle 0}$ jet $p_{\rm T}$ spectra are used to constrained JEC uncertainties
- $_{
 m 0}~m_{
 m lb}^{
 m min}$ distribution used to constrain $m_{
 m t}^{
 m MC}$ (in $\sigma_{
 m tar t}$ + $m_{
 m t}^{
 m MC}$ fit)

extrapolation

- result is extrapolated to the full phase space \rightarrow total cross section
- systematic uncertainties on acceptance are not constrained \rightarrow you cannot measure what you do not see

visible $\mathrm{t}\bar{\mathrm{t}}$ cross section

 $\sigma_{
m t\bar{t}}^{
m vis}{=}25.61\pm0.05\,({
m stat})\pm0.75\,({
m syst})\pm0.64\,({
m lum})\,{
m pb}$

total $t\bar{t}$ cross section (extrapolated)

 $\sigma_{\mathrm{t}ar{\mathrm{t}}} = 803 \pm 2\,\mathrm{(stat)} \pm 25\,\mathrm{(syst)} \pm 20\,\mathrm{(lum)}\,\mathrm{pb}$

Namo	Contribution [%]
Trigger	0.3
Lepton ID/isolation	2.0
Electron energy scale	0.1
Muon energy scale	0.1
let energy scale	0.4
let energy resolution	0.4
b-tagging	0.4
Pile-up	0.1
tł ME scale	0.2
tW ME scale	0.2
DY ME scale	0.1
PDF	1.1
Top p_T	0.5
ME/PS matching	0.2
UE tune	0.3
tf ISR scale	0.4
tW ISR scale	0.1
tf FSR scale	0.8
tW FSR scale	0.1
B-fragmentation	0.7
B-hadron BF	0.1
Color reconnection	0.3
DY background	0.9
tW background	1.1
Diboson background	0.2
W+jets background	0.2
tf background	0.2
Statistical	0.2
Luminosity	2.5
MC statistical	1.1
Total (vis)	3.8
$\sigma_{t\bar{t}}^{VIS}$ (13 TeV)	25.61 pb
tf ME scale (extr)	T 0.3
PDF (extr)	±0.8
Top p_T (extr)	$\mp_{\leq 0.1}^{v.5}$
tt ISR scale (extr)	$\mp_{\leq 0.1}^{0.1}$
tf FSR scale (extr)	$\pm^{0.1}_{< 0.1}$
UE tune (extr)	$\mp \stackrel{<0.1}{_{<0.1}}$
Total	$\pm^{4.0}_{4.0}$
$\sigma_{t\bar{t}}$ (13 TeV)	803 pb

visible $\mathrm{t}\bar{\mathrm{t}}$ cross section

 $\sigma_{
m t\bar{t}}^{
m vis}{=}25.61\pm0.05\,({
m stat})\pm0.75\,({
m syst})\pm0.64\,({
m lum})\,{
m pb}$

total $\mathrm{t}\bar{\mathrm{t}}$ cross section (extrapolated)

 $\sigma_{\mathrm{t}\bar{\mathrm{t}}} = 803 \pm 2\, (\mathrm{stat}) \pm 25\, (\mathrm{syst}) \pm 20\, (\mathrm{lum})\, \mathrm{pb}$

total $\mathrm{t}\bar{\mathrm{t}}$ cross section

 $\sigma_{
m tar t}=815\pm2\,({
m stat})\pm29\,({
m syst})\pm20\,({
m lum})\,{
m pb}$

top MC mass

 $m_{
m t}^{
m MC} = 172.33 \pm 0.14 \, ({
m stat}) \pm ^{0.66}_{0.72} \, ({
m syst}) \, {
m GeV}$

1	Name	Contribution [GeV]
	Trigger	0.02
	Lepton ID/isolation	0.02
	Electron energy scale	0.10
	Muon energy scale	0.03
	Jet energy scale	0.57
	Jet energy resolution	0.09
	b tagging	0.12
	Pileup	0.09
	tł ME scale	0.18
	tW ME scale	0.02
	DY ME scale	0.06
	NLO generator	0.14
	PDF	0.05
	$\sigma_{t\bar{t}}$	0.09
	Top quark p_T	0.04
	ME/PS matching	0.16
	UE tune	0.03
	tī ISR scale	0.16
	tW ISR scale	0.02
	tŧ FSR scale	0.07
	tW FSR scale	0.02
	B -Fragmentation	0.11
	B-hadron BF	0.07
	Colour reconnection	0.17
	DY background	0.24
	tW background	0.13
	Diboson background	0.02
	W+jets background	0.04
	tī background	0.02
	Statistical	0.14
	Total Stat+Syst	$\pm_{0.64}^{0.57}$
	MC Statistical	0.36
	Total	$\pm_{0.73}^{0.68}$
	m ^{MC}	172.33

total $\mathrm{t}\bar{\mathrm{t}}$ cross section

 $\sigma_{
m tar t}=815\pm2\,({
m stat})\pm29\,({
m syst})\pm20\,({
m lum})\,{
m pb}$

top MC mass

 $m_{
m t}^{
m MC} = 172.33 \pm 0.14 \, ({
m stat}) \pm ^{0.66}_{0.72} \, ({
m syst}) \, {
m GeV}$

ATLAS+CMS Preliminary LHCtopWG	m_{top} summary, $\sqrt{s} = 7-13 \text{ TeV}$	September 2017
World Comb. Mar 2014, [7] stat	total stat	
total uncertainty	m _{top} ± total (stat ± syst)	fs Ref.
ATLAS, I+jets (*)	172.31± 1.55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013) LHC top WG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	172.99 ± 0.85 (0.41±0.74)	8 TeV [11]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS, I+jets	172.08 ± 0.91 (0.38 ± 0.82)	8 TeV [13]
ATLAS comb. (Sep 2017) H+H	172.51 ± 0.50 (0.27 ± 0.42)	7+8 TeV [13]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [14]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [16]
(*) Superseded by results shown below the line	TLAG-CORE-2813-077 EII Eur Physiol. C05 (21%1) 388 HP 10 (2002) 390 B[Eur Physiol. C05 (21%1) 388 HP Physiol. C05 (20%1) 2080 D194 (TLAG) C08%-20%1 488 HP Physiol. C02 (20%1) 2080 D194 (TLAG) C08%-20%1 488 TLAG-CORM-2815-592 D12 (TLAG) C08%-20%1 488 TLAG-CORM-2815-592 D12 (TLAG) C08%-20%1 489 TLAG-CORM-2815-592 D12 (TLAG) C08%-20%1 489	(14) Phys. Rev. 203 (2016) 872004 (15) RPJC 77 (2017) 284 (16) CMS-PAID TOP 17 087
165 170 17	5 180	185
m _{to}	_{ip} [GeV]	

recent results from ATLAS and CMS

- overview of recent measurements from ATLAS and CMS at 8 and 13 TeV
- advantages, limitations and applications of each method highlighted
- CMS measurement at 5.02 TeV illustrated \rightarrow constrain gluon PDF at high momentum fraction
- CMS observation of $\mathrm{t}\bar{\mathrm{t}}$ production in pPb collisions at 8.16 TeV

preliminary results by CMS with 35.9 fb⁻¹

- measurement of $\sigma_{t\bar{t}}$ at fixed mass point in $e^{\mp}\mu^{\pm}$, e^+e^- and $\mu^+\mu^-$ channels
- simultaneous determination of $\sigma_{
 m tar t}$ and $m_{
 m t}^{
 m MC}$ in ${
 m e}^\mp\mu^\pm$ channel
- ightarrow all results show competitive precision with respect to previous measurements

recent results from ATLAS and CMS

- overview of recent measurements from ATLAS and CMS at 8 and 13 TeV
- advantages, limitations and applications of each method highlighted
- CMS measurement at 5.02 TeV illustrated \rightarrow constrain gluon PDF at high momentum fraction
- CMS observation of $\mathrm{t}\bar{\mathrm{t}}$ production in pPb collisions at 8.16 TeV

preliminary results by CMS with 35.9 fb⁻¹

- measurement of $\sigma_{t\bar{t}}$ at fixed mass point in $e^{\mp}\mu^{\pm}$, e^+e^- and $\mu^+\mu^-$ channels
- simultaneous determination of $\sigma_{
 m tar t}$ and $m_{
 m t}^{
 m MC}$ in ${
 m e}^\mp\mu^\pm$ channel
- \rightarrow all results show competitive precision with respect to previous measurements

further preliminary results by CMS

- cross section result from simultaneous fit of $\sigma_{
 m t\bar{t}}$ and $m_{
 m t}^{
 m MC}$ used to determine α_S and $m_{
 m t}$
- will be presented at CMS joker talk on Wednesday

Thank you for your attention

cut&count method

- events with ≥ 2 jets, ≥ 1 b-tagged
 → high signal purity
- measurement limited by lepton efficiencies
- significant contribution from JES and choice of NLO gen. (powheg vs aMC@NLO)

$$\sigma_{
m tar t}=$$
 815 \pm 9 (stat) \pm 38 (syst) \pm 19 (lum) pb

EPJC 77 (2017) 172

Source	$\Delta \sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%)	
Experimental			
Trigger efficiencies	9.9	1.2	
Lepton efficiencies	18.9	2.3	
Lepton energy scale	<1	≤ 0.1	
Jet energy scale	17.4	2.1	
Jet energy resolution	0.8	0.1	
b tagging	11.0	1.3	
Mistagging	$<\!\!1$	≤ 0.1	
Pileup	1.5	0.2	
Mode	ling		
$\mu_{\rm F}$ and $\mu_{\rm R}$ scales	<1	< 0.1	
tī NLO generator	17.3	2.1	
tt hadronization	6.0	0.7	
Parton shower scale	6.5	0.8	
PDF	4.9	0.6	
Backgro	ound		
Single top quark	11.8	1.5	
VV	<1	≤ 0.1	
Drell–Yan	< 1	≤ 0.1	
Non-W/Z leptons	2.6	0.3	
tīV	<1	≤ 0.1	
Total systematic	27.9	16	
(no integrated luminosity)	57.0	4.0	
Integrated luminosity	18.8	2.3	
Statistical	8.5	1.0	
Total	43.0	5.3	

ATLAS measurement in $\ell\ell$ and lepton+jets channels (preliminary)

ATLAS-CONF-2015-049

preliminary results with early 2015 data (85 pb^{-1} , 50 ns bunch spacing)

lepton+jets

- · suffers from limited knowledge of systematics
- especially JES and integrated luminosity

 $\sigma_{
m tar t}=$ 817 \pm 13 (stat) \pm 103 (syst) \pm 88 (lum) pb

ee and $\mu\mu$ channels

- simultaneous fit with b-tagging efficiency (as in $e\mu$)
- heavily penalized by data statistics

 $\sigma_{
m tar t}=$ 749 \pm 57 (stat) \pm 79 (syst) \pm 74 (lum) pb

 \rightarrow results not as competitive, but useful complement to the precise result in the $e\mu$ channel

lepton+jets

Uncertainty	$\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ (%)
Data statistics	1.5
tī NLO modelling	0.6
tī hadronisation	4.1
Initial/final state radiation	1.9
PDF	0.7
Single top cross-section	0.3
Diboson cross-sections	0.2
Z+jets cross-section	1.0
W+jets method statistics	1.7
W+jets modelling	1.0
Electron energy scale/resolution	0.1
Electron identification	2.1
Electron isolation	0.4
Electron trigger	2.8
Muon momentum scale/resolution	0.1
Muon identification	0.2
Muon isolation	0.3
Muon trigger	1.2
E_{T}^{miss} scale/resolution	0.4
Jet energy scale	+10 -8
Jet energy resolution	0.6
b-tagging	4.1
NP & fakes	1.8
Analysis systematics	+13 -11
Integrated luminosity	+11 -9
Total uncertainty	+17 -14
	,,,

triggers: dilepton OR single lepton

offline selection

• at least two opposite-charge leptons:

 $\begin{array}{l} {\rm p_{T\,1}} > 25\,{\rm GeV},\,{\rm p_{T\,2}} > 20\,{\rm GeV} \\ |\eta| < 2,4,\,m_{\rm ll} > 20\,{\rm GeV} \\ {\rm Z\text{-veto in } e^+e^-}\,\,\mu^+\mu^- \text{ channels} \end{array}$

- jets: $\mathrm{p_{T}} >$ 30 GeV and $|\eta| <$ 2.4
- b-tagging: CSVv2 Tight WP (at least one b-tagged jet in same-flavour channels)

 \rightarrow events classified in mutually-exclusive categories according to lepton flavour, b-tag and jet multiplicity

control distributions ($e^{\mp}\mu^{\pm}$ channel)

control distributions (e⁺e⁻ channel)

control distributions ($\mu^+\mu^-$ channel)

template fit to distributions of final state observables

- systematic uncertainties treated as nuisance parameters and constrained *in situ* (with exception of luminosity)
- events categorized in bins of jet and b-tag multiplicity in order to constrain modelling systematics and b-tagging efficiency
- jet p_{T} spectra are used to constrained JEC uncertainties

binned Poisson Likelihood

$$\begin{split} L &= \prod_{i} \exp\left[\mu_{i}\right] \mu_{i}^{n_{i}} / n_{i}! \cdot \prod_{m} \pi(\lambda_{m}) \\ \mu_{i} &= s_{i}(\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}}, \vec{\lambda}) + \sum_{k} b_{k,i}^{\mathrm{MC}}(\vec{\lambda}) \end{split}$$

- $\vec{\lambda}$ is a set of nuisance parameters
- $\pi(\lambda_m)$ parametrizes the prior knowledge of $m^{
 m th}$ parameter

0 b-tags: 0,1,2,3 additional jets

1 b-tag: 0,1,2,3 additional jets

CMS Preliminary

Events/GeV 1200 1200

ops: Dued

35.9 fb⁻¹ (13 TeV

+ Data

Signal

Syst

MC Stat

120 140 160 184

Additional iet p [GeV]

Background

CMS-PAS-TOP-17-001

events/Ge

bed ops

CMS Pretrainen

35.9 fb⁻¹(13 TeV

+ Data

Signal

Syst

100-100-100-100-

MC Stat

Additional iet p [GeV]

Background

2 b-tags: 0,1,2,3 additional jets

1 b-tag: 0,1,2,3 additional jets

2 b-tags: 0,1,2,3 additional jets

 \rightarrow at least one b-tagged jet required in same-flavour channels

1 b-tag: 0,1,2,3 additional jets

2 b-tags: 0,1,2,3 additional jets

 \rightarrow at least one b-tagged jet required in same-flavour channels

combined $\sigma_{ m tar t}$ and $m_{ m t}^{ m MC}$ results: pre-fit distributions (${ m e}^{\mp}\mu^{\pm}$ only)

<u>لَّہٰ</u> 1000

obs.

35.9 fb⁻¹(13 TeV

Additional jet p

0 b-tags: 0,1,2,3 additional jets

1 b-tag: 0,1,2,3 additional jets

CMS-PAS-TOP-17-001

35.9 fb⁻¹ (13 TeV

Additional jet p

V9Dist

Scool of the scool

2 b-tags: 0,1,2,3 additional jets

combined $\sigma_{t\bar{t}}$ and m_t^{MC} results: post-fit distributions ($e^{\pm}\mu^{\pm}$ only)

1 b-tag: 0,1,2,3 additional jets

CMS Pre

∧ 90,81500

in 1000

opered.

35.9 fb⁻¹ (13 TeV

+ Data

Signal

Background

Syst+Am^{MC}

MC Stat

120 140 160 180 2 Additional jet p_[GeV

CMS-PAS-TOP-17-001

∧95/100

Nen

pred.

2 b-tags: 0,1,2,3 additional jets

31/18

35.9 m⁻¹/13 TeV

+ Data

Signal

Background

Syst+Am,MC

MC Stat

120 140 160 Additional jet p_

b-tagging efficiencies are determined in situ by exploiting the $t\bar{t}$ topology:

$$s_{1\mathrm{b}} = \mathcal{L}\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}} \epsilon_{\ell\ell} \cdot 2\epsilon_{\mathrm{b}}(1-C_{\mathrm{b}}\epsilon_{\mathrm{b}})$$
 (1)

$$s_{2b} = \mathcal{L}\sigma_{t\bar{t}}^{vis}\epsilon_{\ell\ell}\cdot\epsilon_b^2 C_b$$
 (2)

$$s_{\rm other} = \mathcal{L}\sigma_{\rm t\bar{t}}^{\rm vis} \epsilon_{\ell\ell} \cdot (1 - 2\epsilon_{\rm b}(1 - C_{\rm b}\epsilon_{\rm b}) - C_{\rm b}\epsilon_{\rm b}^2)$$
(3)

- $\epsilon_{\ell\ell}$ is the efficiency of the full selection
- $\epsilon_{\rm b}$ is the b-tagging efficiency
- C_b represents the residual correlation of tagging the two b-jets
- \rightarrow all parameters are derived by the simulation and depend on the systematic uncertainties

parametrization of systematic uncertainties in CMS-PAS-TOP-17-001

- templates corresponding to systematic variations are derived by varying parameters in analysis within their prior uncertainty or by using alternative samples
- in each bin, the dependency on the nuisance parameters is modelled with a second order polynomial
- if the variation is one-sided (comparison between two alternative models) a linear dependence is assumed
- nominal, up and down variations correspond to $\lambda_{k}=$ 0, +1 and -1 respectively

Matteo M. Defranchis

procedure to assess impact of MC stats in CMS-PAS-TOP-17-001

general idea: effect of systematics on fit distributions is modelled with templates obtained either

- by re-weighting events (e.g. ME scale)
- with alternative MC samples (e.g. ME/PS matching)
- re-weighting: stats of nominal templates and varied templates are fully correlated
- 2 alternative samples: fully uncorrelated

procedure

- produce toy templates where each bin is Poisson-smeared according to its MC stats
- fully consistent treatment of correlations between statistical uncertainties in the MC
 - throw individual toys for nominal and alternative samples and re-derive template dependencies
- simultaneously for all the nuisance parameters
- repeat fit to data points and assess effect on results (mass, cross section) and nuisances
- estimates the impact of any possible MC fluctuation

