

Measurement of the single top quark and antiquark production cross sections in the *t* channel and their ratio at 13 TeV

Denise Müller on behalf of the CMS Collaboration CMS-PAS-TOP-17-011 18th Sep. 2018, TOP2018, Bad Neuenahr-Ahrweiler

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (ETP)

Introduction

- Electroweak production of single top quarks
- Most dominant production mode: t channel
- Ratio R_{t-ch} = \(\sigma_{t-ch,t} / \sigma_{t-ch,t}\) provides insight into inner proton structure → sensitive to PDFs
- Direct measurement of CKM matrix element | V_{tb} |
- Analysis of 2016 data set (35.9 fb $^{-1}$)

Analysis

- Signature of t-channel process (leptonically decaying top quark):
 - Light quark in forward direction
 - Hard b quark
 - Second soft b quark (often not detected)
- Event selection:

- One isolated muon (electron) with $p_{\rm T} > 26 (35) \, {\rm GeV}$ and $|\eta| < 2.4 (2.1)$ • Jets with $p_{\rm T} > 40 \, {\rm GeV}$ and
 - $|\eta| <$ 4.7 (2.4 for b-tagged jets)

- Signal and background categories:
 - 2-jets–1-tag (signal category)
 - 3-jets–1-tag and 3-jets–2-tags (tt control categories)

QCD estimation

- Poor estimation/modeling of QCD from MC
- Model QCD distribution from data in sideband region:
 - Require exactly one anti-isolated lepton
 - Remove requirement on $m_{\rm T}^{\rm W}\left(\mu\right)$ and $p_{\rm T}^{\rm miss}\left({\rm e}\right)$
- Estimate QCD contribution:

- Discriminating variable for QCD template: m^W_T (µ) and p^{miss}_T (e)
- Perform maximum likelihood fit on discriminating variable
- Extrapolate to $m_{\rm T}^{\rm W} >$ 50 GeV (μ) and $p_{\rm T}^{\rm miss} >$ 30 GeV (e)

Signal extraction

- Separate signal from background with BDTs
 - Training in 2-jets-1-tag category, separately for muons and electrons
 - Considered backgrounds: tī, W+jets, QCD
 - Nost important variables: light-quark jet $|\eta|, m_{
 m t}, m_{
 m qb}$
- Apply BDT to 2-jets–1-tag, 3-jets–1-tag, 3-jets–2-tags categories, separately for lepton flavors and charges
- Perform maximum likelihood fit simultaneously on twelve BDT outputs
 - Fit parameters: $\sigma_{t-ch,t}$, $\sigma_{t-ch,\bar{t}}$, and R_{t-ch}
 - Correlations between parameters taken into account automatically

Systematic uncertainties

Karlsruhe Institute of Technology

- Two types of systematic uncertainty sources:
 - Profiled uncertainty sources: nuisance parameters in fit
 - Externalized uncertainty sources (signal modeling): repeat fit with systematically varied templates
- Luminosity uncertainty of 2.5% not included in fit
- Most dominant for *R_{t-ch}*: signal PDF
- Most dominant for cross sections: signal parton shower scale, JES

	$\Delta R/R$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(t)$
PDF t channel	1.4	0.7	0.6
PS-scale t channel	1.1	12.5	13.8
ME-PS scale matching t channel	0.2	1.5	1.8
$\mu_{\rm R}/\mu_{\rm F}$ scale t channel	0.1	6.3	6.2
QCD normalization	2.1	1.7	3.8
JES	1.9	6.6	8.4
tt modeling and normalization	1.9	0.8	3.2
Top quark p _T	1.2	4.0	5.2
MC sample size	0.9	1.8	0.5
$\mu_{\rm R}/\mu_{\rm F}$ scale	0.8	1.0	0.3
Pileup	0.4	1.4	1.8
Muon and electron efficiencies	0.3	0.1	0.5
JER	0.2	0.4	0.7
b tagging	0.2	1.2	1.4
PDF	0.1	0.1	0.2
Unclustered energy	0.1	0.4	0.6
W/Z+jets normalization	0.1	0.9	0.9
tW normalization	< 0.1	0.2	0.2

Results

Measurement:

$$\begin{split} R_{t\text{-ch}} &= 1.65 \pm 0.02 \, (\text{stat}) \pm 0.03 \, (\text{prof}) \pm 0.03 \, (\text{ext}) \\ \sigma_{t\text{-ch},\text{t}} &= 136.3 \pm 1.1 \, (\text{stat}) \pm 3.4 \, (\text{prof}) \pm 19.4 \, (\text{ext}) \pm 3.4 \, (\text{lumi}) \, \text{pb} \\ \sigma_{t\text{-ch},\bar{\text{t}}} &= 82.7 \pm 1.1 \, (\text{stat}) \pm 2.7 \, (\text{prof}) \pm 12.6 \, (\text{ext}) \pm 2.1 \, (\text{lumi}) \, \text{pb} \\ \sigma_{t\text{-ch},\text{t+}\bar{\text{t}}} &= 219.0 \pm 1.5 \, (\text{stat}) \pm 6.1 \, (\text{prof}) \pm 32.0 \, (\text{ext}) \pm 5.5 \, (\text{lumi}) \, \text{pb} \end{split}$$

SM predictions [Hathor v2.1]:

 $R_{t-ch} = 1.68, \sigma_{t-ch,t} = 136.0 \,\text{pb}, \sigma_{t-ch,\bar{t}} = 81.0 \,\text{pb}, \text{ and } \sigma_{t-ch,t+\bar{t}} = 217.0 \,\text{pb}$

- Good agreement with prediction, systematically dominated
- Improvement of R_{t-ch} result compared to Phys. Lett. B 772 (2017) 752: $R_{t-ch} = 1.81 \pm 0.18$ (stat) ± 0.15 (syst)

Results

Calculation of |V_{tb}|:

$$|f_{\text{LV}}V_{\text{tb}}| = \sqrt{rac{\sigma_{t-\text{ch},t+\overline{t}}}{\sigma_{t-\text{ch},t+\overline{t}}}} = 1.00 \pm 0.05 \,(\text{exp}) \pm 0.02 \,(\text{theo})$$

Summary

- Measurement of t-channel single top quark and antiquark production and their ratio presented
- 2016 data set (35.9 fb⁻¹) analyzed
- Systematic uncertainties dominant
- All results consistent with SM predictions
- Improvement of R_{t-ch} compared to previous analysis at same center-of-mass energy due to larger data set and electron final state
- Enough precision to be sensitive to different PDF sets
- Analysis public: CMS-PAS-TOP-17-011