

TOP + SUSY

Juan R. González Fernández (Universidad de Oviedo) On behalf of CMS and ATLAS Collaborations

Sep 19, 2018

TOP 2018, Bad Neuenahr.

Why SUSY and top quarks?

Supersymmetry

introduces a symmetry between bosons and fermions. Several new particles may be there.

The SM fine tuning on higgs mass is solved: contributions from top and stop can cancel out.

- Natural SUSY \leftrightarrow ~low levels of fine tuning: m(\tilde{t}_1) < 1-2 TeV.
- Top squark (stop quark) is often the less massive squark: may be produced in pp collisions.

Special case: m(stop) ~ m(top quark): very difficult search (overwhelming tt background). New results from CMS.

Other stop decays: chargino-mediated, stau-mediated.

Overview of stop pair production (ATLAS)

Recent ATLAS results

Stop quark degenerate with top quark

 Stops and ttbar produced with very similar kinematics.

Overwhelming SM background: $\sigma[13\text{TeV}](pp \rightarrow t\bar{t}) = 832 \text{ pb}$ $\sigma[13\text{TeV}](pp \rightarrow \tilde{t}_1\tilde{t}_1, m(\tilde{t}_1) = 175 \text{ GeV}) = 121 \text{ pb}$

-> Sensitivity reached through tt cross section precision prediction.

Full-degenerate model, $m(\tilde{t}_1) = 175$ GeV, $m(\widetilde{X}_1^0) = 1$ GeV, already excluded at 8 TeV by ATLAS and CMS.

 $\Delta m(\tilde{t}_1, \tilde{X}_1^\circ) = m_t$

Stop quark degenerate with top quark (CMS) CMS-PAS-SUS-18-003

Search with opposite-charged $e\mu$ pair and jets. 13 TeV, 35.9 fb⁻¹.

<u>Strategy</u>

- Sensitivity to (near-)degenerate stop signal through precise tt cross section estimate.
- Increase the sensitivity to higher stop masses and larger $\Delta m(\tilde{t}_1, \tilde{X}_1^0)$ differences using $M_{T_2}(e, \mu)$.

$$M_{T2}^{2} = \min_{\substack{p_{T1}^{miss} + p_{T2}^{miss} = E_{T}^{miss}}} \left(\max\left[m_{T}^{2}(p_{T}^{\ell 1}, E_{T}^{miss}), m_{T}^{2}(p_{T}^{\ell 2}, E_{T}^{miss}) \right] \right)$$

Degenerate stop – Background estimate Precise estimate of tt from MC, Powheg + Pythia8 sample. Contributes to ~94% of SM background.

Other backgrounds: **tW** (~4%) and **residual SM** (2%: WW, WZ, ZZ, DY, ttW, ttZ, nonprompt leptons).

Degenerate stop – Uncertainties

CMS-PAS-SUS-18-003

See TOP-PAS-17-001 and

Most important experimental uncertainties: Lepton efficiencies, jet energy scale, b-tagging efficiencies.

Several modeling uncertainties on $t\bar{t}$ acceptance for each bin in the M_{T2} distribution.

Total experimental uncertainties: 2-4%.

talk from Matteo Defranchis Source Range (%) 0.3 - 2ME/PS matching (h_{damp}) Initial state radiation 0.5 - 10.6 - 1.2Final state radiation Color reconnection ≈ 1.5 0.3 - 1ME scales ≈ 0.6 PDF Top mass (acceptance) ≈ 1 Top p_T reweighting 0.1 - 0.5Underlying event ≈ 0.8

Dominant uncertainty: 6% transformed and the second second

Degenerate stop – Results

CMS-PAS-SUS-18-003

Process	with $M_{T2} > 0 \text{ GeV}$	with $M_{T2} > 90 \text{ GeV}$
tī	102400 ± 7400	1680 ± 260
tW	4700 ± 1400	92 ± 32
Nonprompt leptons	1330 ± 400	30 ± 11
$DY + t\bar{t}V + Dibosons$	570 ± 100	19 ± 6
Total Background	109000 ± 7600	1821 ± 260
Signal: $m_{\tilde{t}_1} = 175.0 \text{ GeV}, m_{\tilde{\chi}_1^0} = 1.0 \text{ GeV}$	16400 ± 2500	276 ± 53
Signal: $m_{\tilde{t}_1} = 205.0 \text{ GeV}, m_{\tilde{\chi}_1^0} = 22.5 \text{ GeV}$	8070 ± 1240	232 ± 41
Signal: $m_{\tilde{t}_1} = 205.0 \text{ GeV}, m_{\tilde{\chi}_1^0} = 30.0 \text{ GeV}$	7830 ± 1200	157 ± 27
Signal: $m_{\tilde{t}_1} = 205.0 \text{ GeV}, m_{\tilde{\chi}_1^0} = 37.5 \text{ GeV}$	6140 ± 650	262 ± 45
Signal: $m_{\tilde{t}_1} = 242.5 \text{ GeV}, m_{\tilde{\chi}_1^0} = 67.5 \text{ GeV}$	3550 ± 540	106 ± 19
Data	105 893	1694

 $\begin{array}{l} \underline{Sensitivity\ mostly\ from:}\\ m(\widetilde{t}_1) = 175 \quad \text{GeV},\ m(\widetilde{X_1^{0}}) = 1 \qquad \text{GeV} \rightarrow \text{Signal\ cross\ section.}\\ m(\widetilde{t}_1) = 242.5\ \text{GeV},\ m(\widetilde{X_1^{0}}) = 67.5\ \text{GeV} \rightarrow \text{High\ } M_{_{T2}}\ \text{score.} \end{array}$

Degenerate stop – Exclusion limits

CMS-PAS-SUS-18-003

Exclusion limits up to a stop mass of 205 GeV for the degenerate stop with $\Delta m(\tilde{t}_1, \tilde{X}_1^0) = m_t$.

Exclusion limits up to a stop mass of 235 (245) GeV for $\Delta m(\tilde{t}_1, \tilde{X}_1^0) = m_t + (-) 7.5 \text{ GeV}.$

Degenerate stop – Prospects

Some space for improvements: • Lepton and b-tagging efficiencies. • Jet energy scale / MET resolution.

- → tt modeling.

Analysis will benefit from full Run 2 dataset.

Compressed stop (CMS)

Search with two opposite-charged leptons.

arXiv:1807.07799 Submitted to JHEP.

Target stop production model:

$$m_{\mathrm{W}} < m_{\widetilde{\mathfrak{t}}_1} - m_{\widetilde{\chi}_1^0} \lesssim m_{\mathrm{t}}$$

Off shell top quarks \rightarrow softer b-jets.

MET, b-tag multiplicity, selection of ISR Jet. Further binning in M_{T2} .

Limits extend up to 420 and 360 GeV for the stop and neutralino masses.

Stop production via 4-body decay (CMS)

Search with one lepton and large MET.

$$\begin{split} m_{\widetilde{t}_{1}} &- m_{\widetilde{\chi}_{1}^{0}} < m_{W} & \text{Submitted to JHEP.} \\ \\ I & \underset{\widetilde{\chi}_{1}^{0}}{\overset{F'}{\chi_{1}^{0}}} & \text{Requirement: ISR Jet, } p_{\tau} > 100 \text{ GeV} \\ \text{Lepton } p_{\tau} > 3.5 \text{ (5) GeV for muons (electrons).} \end{split}$$

Two different approaches:

- MVA analysis (lepton, leading jet, MET, H_τ, nJet, nBtag).
- Cut and count (C&C) approach.
 Best discriminating variables: lepton p_T, m_T.

SM normalization from control region at low MVA score (MVA) or high lepton p_{τ} (C&C).

arXiv:1805.05784

Stop production via 4-body decay (CMS)

MVA training depending on $\Delta m(\tilde{t}_1, \tilde{X}_1^\circ)$, from 10 to 80 GeV.

Submitted to JHEP.

arXiv:1805.05784

Stop to c quark (ATLAS)

Search with c-tagged jets at 13 TeV.

Events with 2 c-tagged jets and large MET. Non c-tagged, high- p_{τ} ISR jet required.

Signal regions in categories of jet multiplicity, jet p_{τ} , m_{τ}^{c} .

Main backgrounds: W, Z, $t\bar{t}$. Estimated from data CR.

arXiv:1805.01649

JHEP 09 (2018) 050

Main uncertainties: c-tag efficiency, jet energy scale.

Stop to tau leptons (ATLAS)

arXiv:1803.10178 Phys. Rev. D 98, 032008 (2018)

- Main uncertainties:
- $\rightarrow \tau_{h} \tau_{l}$: fake lepton estimate.
- $\rightarrow \tau_{h} \tau_{h}$: Jet and tau related unc.

Exclusion limits up to a stop mass of 1.16 TeV.

Conclusions

General searches with 2016 dataset from CMS and ATLAS:
→ No SUSY stops with mass below ~ 1 TeV.

New searches: looking into the corners or other decay modes.

- → Is stop degenerate with top quark?
- Compressed 3-body or 4-body decays?
- → Decays into charm quarks?
- Decays through staus or charginos?

Still, top quark very present in SUSY searches, both related to it's SUSY partner of as SM background.

Prospects: new searches and updated/upgraded searches with ~4-5 times the luminosity (~36 fb-1 \rightarrow ~150 fb-1).

Thank you for your attention!!

BACK UP SLIDES

Top-antitop spin correlations (ATLAS)

ATLAS-CONF-2018-027

M_{T2} for near-degenerate stop pairs

Stop to c quark (ATLAS)

Search with c-tagged jets at 13 TeV, 36.1 fb⁻¹.

arXiv:1805.01649

	SR1	SR2	SR3	SR4	SR5	
Trigger	$E_{\rm T}^{\rm miss}$ triggers					
Leptons	$0 e$ AND 0μ					
$E_{\rm T}^{\rm miss}$ [GeV]	> 500					
$\Delta \phi_{\min}(\text{jet}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})$ [rad]	> 0.4					
N_{c-jets}	≥ 1					
N _{jets}	≥ 2	≥ 3	≥ 3	≥ 3	≥ 3	
Leading jet <i>c</i> -tag veto	yes	yes	yes	yes	no	
$p_{\mathrm{T}}^{j_1}$ [GeV]	> 250	> 250	> 250	> 250	> 300	
$p_{\mathrm{T}}^{j_2}$ [GeV]	_	_	> 100	> 140	> 200	
$p_{\mathrm{T}}^{j_3}$ [GeV]	_	_	> 80	> 120	> 150	
$p_{\rm T}^{\tilde{c}_1}$ [GeV]	< 100	> 60	> 80	> 100	> 150	
$m_{\rm T}^{c}$ [GeV]	€ (120, 250)	€ (120, 250)	€ (175, 400)	> 200	> 400	

Stop to sleptons (CMS)

