Higgs Physics from the Bottom Down (Higgs physics beyond ttH)

Kevin Lannon on behalf of CMS

What's Special About Higgs?

- Higgs boson solves two problems in SM
 - Gives mass to the vector bosons to break EWSB
 - Gives mass to the fermions without spoiling gauge invariance
- Higgs is the only fundamental scalar boson observed in nature
 - Or is it...?

K. Lannon

• Higgs has natural ($y_t \sim 1$) coupling to top quark

Higgs Production and Decay

K. Lannon

Given observed mass, Higgs participates in variety of production and decay modes leading to rich set of accessible final states

Higgs Physics Program

- Establish consistency with SM expectations
 - Couplings vs particle masses
 - Spin and parity
- Precise measurement of mass
- Search for non-SM decays
- Search for additional Higgs bosons (e.g. 2HDM, SUSY, etc.)
- Higgs as a portal to new physics

Higgs Couplings Summary + Recent Progress

- Crucial test of SM Higgs: do measured couplings match measured mass values?
- So far, excellent within experimental uncertainties
- Couplings to W, Z, quarks, and leptons tested
- Since most recent combination in March, several measurements updated

Comparison to Run 1

 CMS-only Run 2 results have comparable or better precision to CMS+ATLAS Run 1 combination!

Higgs to Bottom Observation!

- Combines all available results from Run 1 and Run 2

K. Lannon

• Combination has 5.6 std. dev. significance including all channels (4.9 std. dev. in VH alone).

Higgs Coupling to Tau Leptons

- Tau: Combined (Run 1+ Run 2): 5.9 std. dev. (4.7 std. dev. from Run 2 alone) \bullet
- Recent improvement (since last combination) is adding VH channels for Run 2. \bullet

Higgs Coupling to Muons

 Muons: Nothing significant yet, Run 1 + Run 2 dataset

K. Lannon

<u>CMS-HIG-17-019</u>

Muons: Nothing significant yet, but some excess visible in combined

Differential Cross Sections

- input for some parts of phase space.
- Gives some sensitivity to Higgs to charm coupling!

K. Lannon

Stats in "workhorse" channels (ZZ, $\gamma\gamma$) sufficient for differential measurements. H→bb provides additional

<u>CMS-PAS-HIG-17-028</u>

Higgs Sr

Use kinematics information from final state to calculate matrix element discriminants for different scenarios

Continue to study possibility that observed Higgs is mixture of SM and non-SM spin-0.

E.g. Can limit pseudo-scalar fraction (f_{a3}) to fraction of a percent, depending on phase. Using off-shell contributions from 4-lepton channel lead to this very recent improvement!

Parameter	Observed	Expected
$f_{a3}\cos\left(\phi_{a3} ight)$	$0.0000^{+0.0005}_{-0.0011} \ [-0.0067, 0.0050]$	$0.0000^{+0.0014}_{-0.0014}$ [-0.0098,0.00
$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0005^{+0.0025}_{-0.0008} \ [-0.0029, 0.0129]$	$0.0000^{+0.0011}_{-0.0017}$ [-0.0100, 0.01
$f_{\Lambda 1}\cos\left(\phi_{\Lambda 1} ight)$	$0.0001^{+0.0020}_{-0.0010} \ [-0.0150, 0.0501]$	$0.0000^{+0.0010}_{-0.0010}$ [-0.0152,0.01

Higgs Mass and

<u>114 (2015) 191803</u>

Lett.

∆ InL

N

Run 2 mass from 4-lepton final states already comparable precision to Run 1 CMS + ATLAS combination.

Also able to measure Higgs width, using both on-shell and off-shell production. Approaching sensitivity to SM. Can exclude zero at 95% C.L.!

Higgs is most recently discovered particle but has most precisely measured mass.

K. Lannon

120

Higgs and Top Mass in EW Global Fits

Long standing (but not statistically significant) tension between direct and indirect mass determinations still lingers

HH Production: Probing Higgs Potential

- shape of Higgs potential
- Current sensitivity far from SM level. Likely require for HL-LHC to measure.

K. Lannon

Measuring HH production gives information about Higgs self coupling, connected to

BSN Higgs Decays

<u>CMS-HIG-17-001</u>

<u>CMS-HIG-17-001</u>

Lepton Flavor Violating Higgs Decays: Search for Higgs mass peak in invariant mass of lepton pairs with different flavor ($e\tau$, $\mu\tau$)

Set limits on such branching fractions sub-percent in all cases.

Look for evidence of decays *not* predicted by SM

K. Lannon

Higgs decaying to light pseudoscalar pair: pseudoscalar can decay various ways (e.g. bb, TT, or µµ). Limits depend strongly on pseudoscalar decay mode.

Invisible Higgs Decays

Events with leptonic or hadronic signatures of VBF, VH, gluon fusion as well as large missing transverse momentum selected.

K. Lannon

 $\mathcal{B}(H \to inv) < 0.26 \text{ at } 95\%$ C.L.

• Even without excess, data still leave possibility that 26% of Higgs decays are invisible.

Are There Additional Higgs Bosons?

100 110 120 130 140 150 160

CMS-PAS-HIG-16-031

m_{H⁺} (GeV)

CMS-HIG-13-035 19.7 fb⁻¹ (8 TeV) CMS a + 1 0.09 0.08 Observed l + jets ່ ຣູ 0.07 Expected $t \rightarrow H^+ b, H^+ \rightarrow c\bar{s}$ Expected limit $\pm 1\sigma$ B(H⁺ $\rightarrow c\bar{s}$) = 100% E 0.06 Expected limit $\pm 2\sigma$ ^[] 0.05 6 0.04 0.03 0.02 0.01 110 120 130 140 150 160 m_{u⁺} (GeV)

Low Mass **Charged Higgs:** Look for decays of t→H+b. Consider

different H+ decays (cs, cb, τv). Limits on B(t \rightarrow H+b) at percent level.

High Mass Charged Higgs: Look in associated tb production $(H^+ \rightarrow \tau v)$ or VBF (H+ \rightarrow WZ). Limits on $\sigma \times B(H+\rightarrow XY)$ in range depending on mass. of ~1 pb and lower depending on mass.

Results also obtained for specific theoretical framework (MSSM)

K. Lannon

90

).02

0.01

BSM Neutral Higgs: Look for bb or ττ resonance for additional Higgs. Limits on $\sigma \times B(H \rightarrow XX) \sim 1-10 \text{ pb}$

Higgs as Gateway to New Physics

HH Resonance Search: Extend HH analysis to look specifically for resonant production as a function of mass.

• Use Higgs as a probe of new physics via possible Higgs coupling to new higher mass states.

K. Lannon

Vector Top Partners:

Decay signatures that include t and b quarks plus W, Z, or H. Limits depend on nature of top partners and assumptions of branching fractions.

Conclusions

- Much progress made on Higgs physics program
 - Couplings to vector bosons and heaviest quarks and leptons consistent with SM expectations
 - Major deviations from SM spin/parity expectations excluded
 - Mass precisely determined. Closing in on precise measurement of width.
 - HH production measurements still far from SM sensitivity (look to HL-LHC)
- Moving to use Higgs as a probe for new physics
 - Precision coupling measurements
 - BSM and rare decays
 - Higgs coupling to new particles

K. Lannon

• Higgs and top physics connected via $y_t \sim 1$. Watch for more interesting things in future.

