

AGEING CHARACTERIZATION ON LARGE AREA PHOTOMULTIPLIERS

D. Lo Presti, S. Aiello, E. Leonora, G.V. Russo, R. Leanza

INFN, section of Catania And Department of Physics, Catania

VLVNT11, Erlangen 12-14 October 2011

Measurement motivation

- Characterization of the photomultiplier stability over long term operation
 - Gain
 - TT
 - TTS
 - Spurious pulses
- Modelling of the ageing mechanism

Ageing definition for this study

- Ageing: operative parameters variations of a photomultiplier with operating time
 - drift : instability over short time
 - Ife : instability over time longer than 1000 hours
- Photocathode fatigue is negligible
- Ageing mainly depends on variations of secondary emission ratio

Ageing model supposed

- Ageing is due to the progressive sputtering of caesium layer in dynodes due to secondary electrons hitting, followed by sputtering on dynode surface
- Caesium layer on dynode surfaces:
 - Reduce thermo-electrons emission (reduce noise)
 - Reduce secondary-electron emission (reduce noise)
- Presence of excess layer of caesium is confirmed by Hamamatsu
- Caesium layer thickness dispersion is due to technology process (different behaviour on different PMTs)
- Ageing depends on the total accumulated charge

Ageing model: Up-drift and down-drift

Progressive sputtering by secondary electrons of the excess caesium layer :

- Gain increase (decreasing the layer of Cs in excess)
- Evaporation of caesium ions in vacuum

Down-drift

Once the excess caesium layer is removed, sputtering continues on the essential layer of Cs and on the dynode surface:

- Gain decrease
- Evaporation of caesium ions in vacuum

Up-drift and down-drift model

Typical time stability of photomultipliers tube (from Hamamatsu Hand book. "PMT, principle and application "

Devices Under Test

- 2 Hamamatsu R7081 10" photomultiplier:
 - Standard Bi-alkali photocathode (STD)
 - Super-bialkali photocathode (SBA)
 - 10 stages
- The two PMTs differ only for the photocathode
- PMTs at the same start gain condition
 - G ≈ 5 E 7
- The PMT bases for voltage supply were identical, passive

Characterization procedure

- Two alternate phases:
 - Ageing (continuosly pulsed light)
 - LED ON (about 3pe @ 1 MHz. High frequency to accelerate the aging process)
 - PicoLog recording of the anode DC current for each PMT
 - Measurements of PMT parameters (once a week)
 - LED OFF
 - Pulsed Laser at s.p.e. condition
 - s.p.e. charge spectrum
 - s.p.e. Transit Time spectrum
 - Spurious pulses
- Measurements time : from 28/5/2008 to 8/10/2011

≈ 3 years (considering Holidays)

Experimental set-up

- A light-tight dark box (65 x 65 x 110) cm. Thickness 2 cm
- A 400 nm LED (switched 50/50) to illuminate the PMTs uniformily
- A pulsed LASER set in s.p.e. condition (Picoquant PDL-800) (410 nm, 60 ps width, 10 KHz)
- NIM electronics for timing and charge acquisition
- A bolometer as monitor for the LED light stability
- A PicoScope logger to record (simultaneously, Tc = 1 sec)
 - the anodes current
 - internal and external temperature in the box
 - the bolometer output

Results : premises

- In the following plots, the x-axes is the anodic charge measured by the PicoLog.
- The plots refers to the same operating time
- The SBA anodic current collected during the ageing phase is higher than the STD one (higher detection efficiency)
- The ageing process was stopped when the total charge arrived up to about 1800 C for the STD PMT and 2600 C for the SBA PMT
- LED light of about 3pe @ 1 MHz is equivalent to 15 times a source of 1 pe @ 200 KHz
 → the ageing operating time of 3 years is equivalent to
 - about 45 years of operative life of 1 pe @ 200 KHz

Results: Gain

Measured studying the peak position of the Charge spectrum acquired in s.p.e. condition

- the up and down drift model was confirmed by measurements
- a first phase of up-drift with an increase of about 20 %
- a final phase of down drift with a diminuition up to 40% from the max value

Results : Transit Time (relative)

Not considerable variations in Transit Time during operating time

Results: Transit Time Spread (FWHM)

Not considerable variations in Transit Time Spread

Spurious pulses

For each group the ratio of spurious events on main pulses events were calculated

Results: fraction of pre-pulses

Not considerable variations during operating time

/LVNT11, Erlangen 12-14 October 2011

Results: fraction of delayed pulses

Not significative variations during operating time

Results: Type 1 after pulse

Not considerable variations during operating time

Results: type 2 after pulse

- Not considerable variations for a lot of the operating time
- Significative decrease for SBA PMT, from the 8% to 5%, after 1700 C
- Study of the effects of ions Cs evaporated on fraction of after pulses 2

Conclusions

- Apart the Gain, all the measured parameter of the two PMTs are stable during ageing
- A first phase of Up-drift with a gain increase of about 20 % followed by a final phase of down-drift with an gain decrease of about the 40% from max value
- The ageing model of Up- and Down- drift has been demonstrated by the results
- The ageing process was stopped when the total charge arrived up to about 1800 C for STD PMT and 2600 C for SBA PMT
- The measuring time (3 years) is equivalent to an operating time of about 45 years @ 1 pe @ 200 KHz
- The final values of the Gain for both PMTs is still suitable for their use

Work in progress

 An accurate study of the dynode surfaces after ageing by microscope is being carried in the next months

Thanks for the attention

Further information: domenico.lopresti@ct.infn.it emanuele.leonora@ct.infn.it

Pictures of sputtered dynodes

Last Dynode

First Dynode

Erlangen 12-14 October 2011