Summary of the PMT measurement campaign with the DarkBox

Carlos Maximiliano Mollo – INFN (Naples)

The DarkBox: a high statistics PMT test

One DOM electronics allows to acquire data from 31 PMTs Using two synchronized DOM electronics we can test 62 PMTs in parallel.

facility

62 dark cylinders: each PMT is optically isolated with respect to the others

Optical components

Optical components

The opal diffusing glass discs

The optical splitter 1 input, 70 outputs

All outputs within 0,50% - 1,50% interval of the input power

Optical components

The optical splitter connected to the dark cylinders

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Optical components

PiLas Mod. EIG2000DX

Repetition rate (internal trigger)	50 Hz – 1 MHz
Repetition rate (external trigger)	Single shot – 1 MHz
External trigger input	TTL & VAR upt 120 MHz
External trigger pulse width	Typ. \geq 4 ns
Synchronization output pulse width	typ. ≥ 4 ns for external triggering 50% duty cycle for internal oscillator
Typical jitter between synchronization trigger output and optical signal	typ. ≤ 4 ps
Warm-up time	< 5 minutes
LASER head	Wavelength 405 +/- 10 nm, spectral width < 7 nm, pulse width (FWHM) typ < 45 ps

Mechanics

PMT Hamamatsu

Mechanics

Two trays of 31 PMTs each

Electronics

PMT tray equipped with cable extensions from Bari (Thanks to Marco Circella)

Removable connectors For fast replacing

Electronics

Electronics

"CLB I" with PPS signal modified (output is LEMO, signal is 20 KHz trigger, synchronized with PPS). V2.2

- "CLB II" V2.2 no modifications
- Laser Pilas Advanced Laser diodes
- White rabbit switch, SFP avago & comm fibers
- Extended cables for the PMT bases
- Calibrated Optical fibers to each PMT (equalized distance).

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

WR Switch

Dark Box Control by V. Kulikovskiy

	User	Location	StartTime	EndTime			V. Kulikovskiy
Continue Test	Mollo	Napoli	2015-02-11715:20:52 765+0000	2015-02-12713-29:13.30+0000	Finalize Test		kulikovs@ge.infn.i
tart HV tuning	start Laser Meas.			SetHVRunnumber		Analyze HV Tuning]
GetUPI	GetHV_default			Start		Analyze Darkening]
				Stop		Analyze Laser	1
	HV default	HV Mon					
MA-R12199/2.7277 -	-1243.620000		2,0	000862	3.4.2.3/HAMA-R12199/2.6737 💌	-1168.800000	
MA-R12199/2.7285	-1092.960000		2,1	00090F	3.4.2.3/HAMA-R12199/2.4177 💌	-1086.080000	
	-1256.630000		2,2	000462	3.4.2.3/HAMA-R12199/2.4174 -	-1003 570000	
-	-1201.880000		2,3	000837	3.4.2.3/HAMA-R12199/2.6723 👻	-1071 720000	
-			2,4	0009E5	3.4.2.3/HAMA-R12199/2.4178 -	-933049000	
-	-1172.210000		2,5	000A0F	3.4.2.3/HAMA-R12199/2.4172 💌	-987.256000	
-			2,6	000A49	3.4.2.3/HAMA-R12199/2.6722 -	-1151 250000	
MA-R12199/2.7268	-1167.610000		2,7	000A93	3.4.2.3/HAMA-R12199/2.4173 -	-1090.160000	
	-1174.440000		2,8	000506	3.4.2.3/HAMA-R12199/2.6726 💌	-1148.890000	
MA-R12199/2.7269	-1099.410000		2,9	000871	3.4.2.3/HAMA-R12199/2.6727 💌	-1051.700000	
	-1124.730000		2,10	(TETETE			
-			2,11	00047F	3.4.2.3/HAMA-R12199/2.6736 -	-1218.970000	
-	-1176.830000		2,12	000433	3.4.2.3/HAMA-R12199/2.6745 -	-1228.520000	
-	-1128.740000		2,13	00280E	3.4.2.3/HAMA-R12199/2.2473 💌		
-	-1285.030000		2,14	002088	3.4.2.3/HAMA-R12199/2.2474 -	-1081 530000	
MA-R12199/2.7270	-1094 830000		2,15	002D17	3.4.2.3/HAMA-R12199/2.2480 -		
-	-1302 710000		2,16	002080	3.4.2.3/HAMA-R12199/2.2472 -	-1163.400000	
MA-R12199/2.2487	-1253.410000		2,17	002D28	3.4.2.3/HAMA-R12199/2.2470 *	-1070.570000	
MA-R12199/2.2486	-1132.060000		2,18	00000	3.4.2.3/HAMA-R12199/1.1616 🔻		
MA-R12199/2.7266			2,19	002C4A	3.4.2.3/HAMA-R12199/2.2479 -	-1032,300000	
MA 013100/3 3498	1103.070000		3.20	003451	2 4 3 234444 813100 2 3466	12271140000	

Detector Manager by C. Bozza

Data Base

Dark Box Setup

- "CLB I" with PPS signal modified (output is LEMO, signal is 20 KHz trigger, synchronized with PPS). V2.2
- "CLB II" V2.2 no modifications
- Laser Pilas Advanced Laser diodes
- White rabbit switch, SFP and comm fibers
- Extended cables for the PMT bases
- Calibrated Optical fibers to each PMT (equalized distance).

Pre-darkening

A test in order to verify the effect of the neon lights on the PMTs dark counts (DC) and to measure the recovery time needed was performed. We measured the dark rate of six PMTs (previously tested with the DarkBox) after weeks of darkening within the shipping box. After the measurements we moved the PMTs in a laboratory illuminated with fluorescent tube lights for two hours then, we moved the PMTs again in the dark box. After one hour of darkening with PMTs switched off we started the DC measurement.

The time needed in order to reach the initial values of dark counts is approx. a week.

PROMIS ID	UPI	DC before light exposure [cps]	DC after one week from light exposure [cps]
002DFA	2.6972	420	385
000542	2.6987	295	341
002F38	2.6411	388	381
002EA4	2.7756	310	325
0030AC	2.6404	321	337
002F5A	2.6412	368	334

Elog entry: Qualification 547

- 1 CLB drives laser, and reads PMTs
- The same channel evening/morning next day
- Laser + PMT to the same CLB
- delta T \sim 130+-25 ps difference between the same measurements

DarkBox Calibration 2 CLBs + WRS syncro

- CLB drives Laser and detects light with PMT at channel 0
- One CLB drives Laser, second one detects light with PMT at channel 0
- Hit time peak value difference is 120+-35 ps (from fit)

• Fixed latency:

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

- delta T for all Octopus channels (same PMT and setup)
- Large-Small mean difference is 780 ps
- Max difference 1.4 ns

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

- Added measurements with other CLB + other octopuses (no laser attached to it)
- Scope test CLB + Octopus channels
- The difference in delta t are smaller than 200 ps

HV tuning

- Hamamatsu provides the Nominal High Voltage obtained in Current mode operation.
 KM3Net works in pulsed mode.
- Tune HV : TOT 26.4 (reference by Oleg K. average value og 600 PMT)
- Scan HV from Hamamatsu NHV -100 V; +50 V with a step 25 V
- Base Threshold 1095 mV (2F) \rightarrow 0.3 p.e.

HV tuning

- Hamamatsu provides the Nominal High Voltage obtained in Current mode operation.
 KM3Net works in pulsed mode.
- Tune HV : TOT 26.4 (reference by Oleg K. average value og 600 PMT)
- Scan HV from Hamamatsu NHV -100 V; +50 V with a step 25 V
- Base Threshold 1095 mV (2F) \rightarrow 0.3 p.e.

HV tuning fails

322 PMTs has not passed the test due to HV tuning failure

If the Promis ID is wrong the vendor HV is wrong too. The HV tuning starts from a HV value that is the vendor's one. So many RED PMTs could be GREEN just testing them again with the correct vendor HV.

Test procedure

Load PMTs on the trays 1 h Set Nominal HV 30 min HV tuning (including HV tuning analysis) 1 h 30 min Darkening 5 h LASER tests (TTS, prepulses, afterpulses and 30 min • Delayed pulses) PMT selection after test results and 30 min • packaging 9 hours for each test Thanks to a little modification on the LASER controller we can control each component

remotely. At the moment we are performing 2 tests/Day.

With another couple of cable extensions we can improve the test time of about 1h

Output test example

The HV tuning fit HV tuning

Dark Counts trend

rate*10.:tsec {domid == 12497449 && channel == 15}

DarkBox test summary (Test #33) PROMIS ID: 0005C4 Quality : GREEN UPI : 3.4.2.3/HAMA-R12199/2.4082 Tuned HV : -987.94 V DarkRate : 793.13 Hz ToT peak : 26.8561 ns Prepulses : 0.00292931% Delayed : 0.0709103% Afterpulses : 0.476641% TT peak : 3793 ns TT FWHM : 3 ns

Fast Acceptance protocol

We need tested PMTs as soon as possible! We need to define a FAST AND SAFE Protocol to identify good PMTs.

This is not an acceptance protocol for KM3NeT! Is just a fast way to have good PMTs for the integration sites.

After the re-test of 130 YELLOW PMTs and 856 RED PMTs we had 50 YELLOW PMTs. It was Decided to re-test them with a darkening time of 24 hours.

YELLOW PMTs recovered: 96,87%

Dark rates ALL

Dark counts at 20 deg C and 0.3 spe threshold within 12 hours:

- 1500 cps typ. (89.7%)
- 2000 cps max. (92,9%)

85% < 1070 cps 89% < 1490 cps 95% < 2630 cps 98% < 5460 cps 99% < 9130 cps

ToT ALL

ToT: 27.1 ± 0.5 ns

NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	1.95545e+03	3.31033e+01	2.36070e-01	6.42487e-06
2	Mean	2.71566e+01	6.59424e-03	6.03524e-05	-1.76085e-02
3	Sigma	4.99883e-01	5.54941e-03	2.07381e-05	1.03240e-01

Prepulses ALL

Prepulses between -60 ns and -10 ns:

- 1% typ. (97,8%)
- 1.5% max. (98,8%)

85% < 0.16 % 91% < 0.24 % 95% < 0.42 % 98% < 0.82 % 99% < 1.20 %

Delayed Pulses ALL

ΝΟ.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	1.74615e+03	3.23823e+01	3.13527e-01	-5.28851e-06
2	Mean	3.16627e+00	6.73859e-03	6.25039e-05	1.46766e-02
3	Sigma	3.48020e-01	4.21744e-03	2.49388e-05	-2.70357e-02

Delayed pulses between 15 ns and 60 ns (i.e. pulse arriving late with no pulse at correct time):

- 3.5 % typ. (73,5 %)
- 5.5 % max. (98,5 %)

Afterpulses ALL

Afterpulses: 7.2 \pm 2.4 %

NO	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	2.40958e+02	4.83007e+00	-1.68602e-02	-1.15780e-04
2	Mean	7.06440e+00	5.45156e-02	1.12946e-04	6.77774e-03
3	Sigma	2.43315e+00	5.49366e-02	-4.50349e-05	-1.46000e-01

Late after-pulses between 100 ns and 10 us:

- 10 % typ. (71,4 %)
- 15 % max. (92,4 %)

TTS ALL

TTS: 2.6 ± 0.6 ns

NO	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	4.26268e+03	7.78017e+01	2.70070e-02	4.80071e-07
2	Mean	2.56299e+00	7.87677e-03	7.68896e-06	1.12190e-03
3	Sigma	5.66615e-01	7.87494e-03	1.74721e-06	2.52584e-03

Dark rates GREEN

85% < 850 cps 90% < 1030 cps 95% < 1360 cps 98% < 1680 cps 99% < 1840 cps

ToT GREEN

ToT: 27.1 ± 0.5 ns

NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	1.71977e+03	3.09572e+01	2.01156e-01	1.38358e-06
2	Mean	2.71399e+01	7.01510e-03	5.84667e-05	-3.08259e-03
3	Sigma	4.99847e-01	5.87814e-03	2.03997e-05	1.25413e-02

Prepulses GREEN

85% < 0.12 % 91% < 0.18 % 95% < 0.30 % 98% < 0.48 % 99% < 0.66 %

Delayed Pulses GREEN

Delayed pulses: $3.1 \pm 0.3 \%$

NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	1.76168e+03	3.39285e+01	3.24138e-01	-2.11545e-06
2	Mean	3.14773e+00	6.47870e-03	6.27782e-05	7.81600e-03
3	Sigma	3.39754e-01	4.46385e-03	2.85827e-05	-1.64899e-02

Afterpulses GREEN

Afterpulses: 7.1 \pm 2.9 %

NAME	VALUE	ERROR	SIZE	DERIVATIVE
Constant	2.31121e+02	4.52094e+00	1.56305e-02	7.77533e-06
Mean	7.08029e+00	5.79604e-02	2.67652e-04	1.89935e-04
Sigma	2.92765e+00	7.17130e-02	2.84968e-05	2.25752e-03
	NAME Constant Mean Sigma	NAME VALUE Constant 2.31121e+02 Mean 7.08029e+00 Sigma 2.92765e+00	NAME VALUE ERROR Constant 2.31121e+02 4.52094e+00 Mean 7.08029e+00 5.79604e-02 Sigma 2.92765e+00 7.17130e-02	NAME VALUE ERROR SIZE Constant 2.31121e+02 4.52094e+00 1.56305e-02 Mean 7.08029e+00 5.79604e-02 2.67652e-04 Sigma 2.92765e+00 7.17130e-02 2.84968e-05

TTS GREEN

TTS: 2.5 ± 0.4 ns

NO	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	5.45648e+03	1.72582e+02	4.34001e-01	-3.25981e-06
2	Mean	2.54206e+00	6.27925e-03	2.88585e-05	1.39497e-02
3	Sigma	4.28361e-01	8.68543e-03	1.41196e-05	-1.24344e-02

First hits distribution

We can have a distribution that contains info from all PMTs

average of all normalized and shifted distributions

TT first Hit average dist. by chan. tray 0

TT first Hit average dist. by chan. tray 1

First Hit TT all channels

Average histogram of all 6960 PMTs

RMS study

RMS distribution superimposed

RMS distribution from -100 to 100 ns

RMS of the hit time between -100 and 100 ns is a good parameter to indentify spurious pulses anomalies.

ToT vs TT all hits (near the laser time)

Afterpulses identification

Afterpulses identification

- Distribution of the averages of parameters measurements in a tray.
- 99 tests done = 198 average values for each parameter

Dark counts VS nTest

Quite flat and good values

Dark Box performances monitoring TTS(FWHM) VS nTest

3.5 TTS(ns) 3 2.5 1.5 0.5 0 20 80 100 120 180 40 60 140 160 í٥ nTest

Quite flat and good values

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Afterpulses counts VS nTest

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Delayed pulses VS nTest

Some statistical anomalies due to a dependecy of the measurement to the laser conditions This «instability» was fixed from test 77

Some statistical anomalies due to a dependecy of the measurement to the laser conditions This «instability» was fixed from test 77

Distribution of the HVtuned and HVvendor difference

HVtuned-HV Hamamatsu

Two tests performed with HV tuning and with VendorHV-50V

The test 92 was performed adopting the classic method (test 92n with HV tuning) and was porformed again setting all HV to the HVvendor -50V value (test 92).

ToT VS nTest

Obviously the ToT in test 92n is much more stable but as you can see the differences are not too high. In addition this calibration could be performed after DU integration.

Two tests performed with HV tuning and with VendorHV-50V

The test 92 was performed adopting the classic method (test 92n with HV tuning) and was porformed again setting all HV to the HVvendor – 50V value (test 92).

Here the DC for both tests. The differences are negligible but during the HV tuning 3 PMTs do not passed the test (3 DC=0 points)

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Two tests performed with HV tuning and with VendorHV-50V

The test 92 was performed adopting the classic method (test 92n with HV tuning) and was porformed again setting all HV to the HVvendor – 50V value (test 92).

Here the prepulses, we have almost the identical behaviour for both tests.

Two tests performed with HV tuning and with VendorHV-50V

The test 92 was performed adopting the classic method (test 92n with HV tuning) and was porformed again setting all HV to the HVvendor – 50V value (test 92).

Also for the delayed pulses we have the same behaviour, the 3 zero peaks are for the PMTs that do not have passed the HV tuning.

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Two tests performed with HV tuning and with VendorHV-50V

The test 92 was performed adopting the classic method (test 92n with HV tuning) and was porformed again setting all HV to the HVvendor – 50V value (test 92).

Afterpulses VS nTest

Also for afterpulses the two measurements are almost equal.

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Also test 93 was performed with VendorHV-50V and performing the HV tuning. ToT differences vs HV differences for both tests

Carlos Maximiliano Mollo – 15/01/2018 – PMT Workshop – Napoli

Also test 93 was performed with VendorHV-50V and performing the HV tuning. TT differences vs HV differences for both tests

Conclusions

- 6960 PMTs tested: 6483 green PMTs, 472 RED PMTs and 5 YELLOW PMTs.
- RED and YELLOW PMTs were replaced by Hamamatsu
- Small variations in HV have a small impact on PMTs performances.
- HV tuning fails if the promis ID is wrong (bit flip)
- The RMS of the hit time histogram is a good parameter to identify RED PMTs due to timing problems.
- Pre-darkening longer than a week is need to prevent effects due to sunlight or fluorescent light exposure