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Plus ça change, plus c'est la même chose
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• The first Lunchtime Seminar I gave at SLAC was in February, 1969, 
as part of my interview for a postdoc position

• The topic was the measurement of the sizes and shapes 
of nuclei with a permanent quadrupole deformation, using 
detailed analysis of the hyperfine structure in muonic X-ray 
spectra. This involved stopping low momentum negative 
muons (~103/s) produced in the decay of pions at the 
385 MeV Columbia synchrocyclotron in a variety of targets, 
from 152Sm to 238U

• My seminar today also involves, in part, stopping large numbers (1010/s) of
low momentum negative muons produced in the decay of pions produced at the 
8 GeV Fermilab booster, stopped in an 27Al target, a search for charged lepton flavor 
violation, henceforth CLFV
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Charged lepton flavor violation (CLFV)
• CLFV denotes a transition among µ, e and τ lepton states that doesn’t 

conserve lepton family number, i.e., there are no neutrinos involved
• A CLF conserving transition:
• A CLFV transition: µeγ , µ3e , µ N e N (µe conversion)

• Family number is not a symmetry of the Standard Model Lagrangian
• Quark family number is violated in weak decays (c.f. the CKM matrix)
• Neutrino oscillations are proof of the violation of neutral lepton flavor 

conservation as well as evidence for BSM physics (e.g., see-saw)
• A natural question: “Is there also observable charged lepton flavor violation?”

• In the Standard Model (+ heavy neutrinos), CLFV is very small:

• Thus CLFV searches are a clean probe of new physics
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Searching for CLFV
• Many NP models predict CLFV processes to occur in an observable regime
• The sensitivity to CLFV in loop processes can exceed that in direct production 

• There are many distinct experimental probes and a rich phenomenology, 
leading to a robust experimental scene

• µeγ : most powerful limits: MEG at PSI. Upgrade underway
• µ N e N muon to electron conversion: three experiments upcoming: 

one at FNAL and two at JPARC 
• µ3e : unique effort at PSI
• µ− N e+ N(Z-2) (Mu2e–II?)
• µ + e−  µ− e+

• τµγ and many other τ decays (Belle II)
• KL  µe , B  µe, K  µe,  …  (LHCb, expts at J-PARC, CERN)
• H0 µ, e, τ +X

• The form of the CLFV Yukawa coupling matrix is model-dependent, 
e.g., it could be PMNS-like or CKM-like

• Different theories predict distinct correlations between CLFV processes
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• Low energy probes: rare µ,τ and h decays,
µ e conversion, CLFV in meson decay

CLFV Processes
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Higgs decay: h0® τ µ  (also τ e, µ e)
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The new CLFV physics

CLFV process rates and ratios are thus sensitive probes 
of the underlying models

µ +  e+γ µ− N  e− N µ+  e+e+e−
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New Physics contributions to µ→ e conversion
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µNeN is sensitive to a wide variety of New Physics models, e.g.,
SUSY, 2HDM, Extra Dimensions, Leptoquarks, GUTs, LHT,…
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Dipole interaction
(SUSY, ……)

Contact in t e rac t ion
(Z', leptoquarks, …

CLFV processes have 
unique sensitivity to 
New Physics at high 
mass scales
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Purely leptonic case: μ→ eγ, μ→3e  (τ →)
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Current and future CLFV limits (90%CL)

Process Current Limit Next Generation exp
τ  µη BR < 6.5 x 10-8

τ  µγ BR < 6.8 x 10-8 10-9 - 10-10 (Belle II)
τ  µµµ BR < 3.2 x 10-8

τ  eee BR < 3.6 x 10-8

KL  eµ BR < 4.7 x 10-12

K+  π+e−µ+ BR < 1.3 x 10-11

B0  eµ BR < 7.8 x 10-8

B+  K+eµ BR < 9.1 x 10-8

µ+  e+γ BR < 4.2 x x 10-13 10-14 (MEG Upgrade)
µ+  e+e+e- BR < 1.0 x 10-12 10-16 (Mu3e)
µN  eN Rµe < 7.0 x 10-13 10-17 (Mu2e, COMET)
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Bounds on Higgs exchange models
• Bounds on CLFV couplings to the Higgs can be derived from 

LHC limits as well as conventional leptonic processes

CLFV Higgs decay
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Higgs Yukawa coupling limits
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Limits on Higgs CLFV couplings
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Model discrimination through correlations

Calibbi et al. arXiv:1408.0754 [hep-ph]
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Blanke, Buras, Duling, Recksiegel & Tarantino, 
Acta Phys. Polon. B41, 657 (2010) 

Correlations in the branching fractions τ µγ→ and

(τ →µγ) vs. (µ→eee) and CR(µ → e on Ti)
in an SO(10) Type II SUSY model
Calibbi, et al., JHEP 0912 057 (2009)
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Model discrimination through correlations

15



Chronology of µ and τ CLFV searches
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Chronology of µ and τ CLFV searches
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Limits on CLFV τ decays
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BABAR
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Friends in high places
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• Sid Drell’s involvement with the CIA/Air Force CORONA program of satellite 
reconnaissance proved to be crucial to the timely completion of BABAR

• The detector solenoid was built by Ansaldo in Genoa. It was originally planned to 
transport the coil to SLAC by ship, but when the completion fell behind schedule,
we were able to make up time by shipping the coil using an Air Force C130

• At that time (1997) there was US involvement in the Balkan war, so that many 
planes were transporting matériel to The NATO base in Genoa and returning empty

• Sid was able to secure permission from one of his Air Force general friends to ship 
the BABAR solenoid to Moffett Field using a returning C130, thereby preserving the 
schedule
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Backgrounds: the name of the game
• At the sensitivities required to advance the state of the art in both τ decays and 

muon experiments, the primary issue is control of backgrounds in a high rate 
environment

• Irreducible backgrounds
• Accidental backgrounds

• Problematic backgrounds are specific to the type of experiment
• Handles on background control are

• Charged particle energy resolution
• Neutral energy resolution
• Time resolution
• Particle identification
• Prompt beam particle rejection
• Cosmic ray rejection

• New muon experiments
• MEG upgrade
• Mu3e
• DeeMe, Mu2e, COMET
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• New τ decay experiments
Belle II
LHCb
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Belle II τ CLFV limits
 The target integrated luminosity of 50 ab-1

(~5x1010 ττ ) will be reached in ~2025
 The improvement in sensitivity to CLFV 

τ decays depends on whether or not a 
particular mode has backgrounds
 e.g., limits on B(τ→) improve as            if there is no background,

but more slowly, as ~                 , if there is background
1/òdt

(1/òdt)1/2
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Muon experiments: CW vs pulsed beams

DC ti i  i  t

• µe conversion experiments 
need a pulsed µ− beam, such 
as FNAL or J-PARC
• many (prompt) pion-

induced backgrounds 
immediately after the 
proton pulse

• Use the muon/pion 
lifetime difference to 
reduce background 

CW operation optimizes the S/N Pulsed operation optimizes the S/N 
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• Muon decay experiments
µ®eγ, µ®eee need a 
continuous µ+ beam, such as 
the PSI synchrocyclotron 
surface muon beam

• The dominant backgrounds 
come from accidental 
coincidences of two decays
• background µ (rate)2

• signal µ rate
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Muon experiments: CW vs pulsed beams

DC ti i  i  t

• µe conversion experiments 
need a pulsed µ− beam, such 
as FNAL or J-PARC
• many (prompt) pion-

induced backgrounds 
immediately after the 
proton pulse

• Use the muon/pion 
lifetime difference to 
reduce background 

CW operation optimizes the S/N Pulsed operation optimizes the S/N 
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• Muon decay experiments
µ®eγ, µ®eee need a 
continuous µ+ beam, such as 
the PSI synchrocyclotron 
surface muon beam

• The dominant backgrounds 
come from accidental 
coincidences of two decays
• background µ (rate)2

• signal µ rate

Live Window
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MEG upgrade signal and backgrounds

CLFV signal            Radiative muon decay           Accidental background
correlated uncorrelated
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Events are described by five variables:  , , , ,e e e eE E tγ γ γ γθ φ
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MEG backgrounds
• Backgrounds are proportional to:

• uncorrelated backgrounds µ instantaneous rate 
• electron-photon time resolution
• electron momentum resolution
• square of photon energy resolution, since background due to the integral 

of the photon spectrum of µ®eννγ ∼ (1 − 2Εγ / mµ )
• Square of electron-photon angular resolution

• These considerations dictated the original MEG design and the improvements 
incorporated in the upgrade

Stop 107 muons/sec 
in 150μ kapton target

David Hitlin                               SLAC                               January12, 2018

( )
2 2

/ 2 15 / 2 2
ee

e

R EEt
D m m

µ γ γ
γ

µ µ

θ  ∆ ∆   ∆
∆             

25



MEG upgrade

David Hitlin                               SLAC                               January12, 2018 26



MEG upgrade
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MEG: 216 PMTs on inner face

Upgrade: ~4000 MPPCs on inner face
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MEG result and upgrade goal
• MEG has the best current limit on B(µ+e+γ)
• Uses a surface muon beam: DC, |pµ| 28 MeV/c, 108 µ/s
• With a total of 7.5x1014 stopped muons, gathered in runs from 2009 through 2013, 

they set a 90% CL limit of < 4.2 x 10-13 (Baldini et al., Eur.Phys.J. C76434, 2016)
• The MEG Upgrade will improve the detector to achieve a 90% CL limit of < 5 x 10-14 

in a three year run
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• Upgrade schedule
• Engineering Run 2017 to test LXe modifications and timing
• Full Engineering Run July 2018
• Data Fall 2018
• Upgrades to PSI to modify the surface beam target station
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Mu3e

• Current limit: 1.0×10-12 (SINDRUM at PSI, 1988)
• Mu3e at PSI will provide substantial improvement

• Uses a surface muon beam - πE5 beamline 
• Phase I  

• 2018 - 108 µ+/s
• Sensitivity 10-15

• Phase II  HIMB  109 µ+/s
• Sensitivity 10-16

Signal
E = mμ
Σpi=0
Vertex

Background
Accidentals

Radiative decay
w internal conversion

+
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Mu3e detail
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Mu3e sensitivity
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Mu3e sensitivity
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µ to e conversion experiments

• The signal is a single 
mono-energetic electron

• If N = Al, Ee ~105 MeV
• electron energy 

depends on Z, due to
atomic binding energy

• Coherent nuclear recoil

• There are four experiments 
in various stages of preparation

• DeeMe
• COMET Phase I and Phase II
• Mu2e
• PRISM/Prime

• All face similar challenges, addressed in specific ways
• High rates to achieve required sensitivity
• Prompt and delayed beam-related backgrounds
• Cosmic ray backgrounds

David Hitlin                               SLAC                               January12, 2018

Origins trace to MELC and MECO proposals}
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µe experiment schematic

1) Generate a beam of low momentum negative muons
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Production Decay & Transport
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1) Generate a beam of low momentum negative muons
2) Stop the muons in a target (C, SiC, Al, Ti, …..)

µ stopping
target

other stuff

Production Decay & Transport
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1) Generate a beam of low momentum negative muons
2) Stop the muons in a target (C, SiC, Al, Ti, …..)

• In orbit around nucleus: τµ
Al = 864 ns

• Large τµ
N is important for discriminating background
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Production Decay & Transport
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p π − µ −

µe experiment schematic
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1) Generate a beam of low momentum negative muons
2) Stop the muons in a target (C, SiC, Al, Ti, …..)
3) Search for events consistent with µNeN

4) Discriminate against backgrounds from pion decays and interactions, muon 
decays in orbit (DIOs), radiative decays and cosmic rays
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et µ stopping

target

Experimental apparatus e-

other stuff

Production Decay & Transport Detector
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p π − µ −

µe experiment schematic
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Decay-in-Orbit Shape

David Hitlin                               BLV17                               May 
15, 207

Ee MeV

max

1 dN
E dE Ee (max) = 52.8 MeV
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Czarnecki
Szafron

Decay-in-Orbit Shape

With µ -Al27 binding energy
and radiative corrections

Ee MeV

max

1 dN
E dE
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Czarnecki
Szafron

Decay-in-Orbit Shape

With µ -Al27 binding energy
and radiative corrections
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DeeMe
• Directly search for µ→ e conversion in a high power target

• High power, high purity proton beam from MLF at J-PARC
• initially a graphite target, then a rotating SiC target
• production and conversion target are the same

• Single event sensitivity (1 year = 2×107 sec) with  1MW beam
• 1.2×10-1 3 2.1×10-1 4

•
Upgrade to SiC• 2.5×10-1 4 (4 years) • 5×10-1 5 (4 years)

proton

Production 
target Secondary beamline

①π－ production
② in-flight π－→ µ－

③muonic atom formation
④µ-e conversion

Magnet 
Spectrometer

π −

µ −
e-

e-low-p BG

high-p
signal

①

②
③
④
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DeeMe status
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• Will start with graphite target
• Detector components built
• Beamline (to be shared with 

other experiments such as g-2 
scheduled for 2018

• PACMAN spectrometer magnet 
moved from TRIUMF
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Mu2e
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Production Target / Solenoid

Transport Solenoid Detector Solenoid

Cosmic ray veto not shown

• The Mu2e sensitivity goal 2.6 x 10-17 demands a total of ~ 6x10 17 stopped muons 
in a 3 year run of ~ 6x107 second total

• This requires a muon stopping rate of 1010/sec

• Experimental design
• Pulsed proton beam produce pions, which are captured in the backward direction
• Transport muons from pion decay, with momentum and sign selection
• Since electron backgrounds are at lower momentum than the sought conversion 

electrons, confine lower momentum particles to smaller helical radii in a solenoid 
and a provide hole in tracker and calorimeter for them to pass through

• Reject cosmic ray events
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The Muon Campus at Fermilab
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The Muon Campus at Fermilab
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The Collaboration in the Mu2e hall
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Beamline + detector layout
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The Mu2e experiment

• The sensitivity goal demands a total of ~ 6x10 17 stopped muons in a 3 year run of ~ 6x107 sec  
This requires a muon stopping rate of 1010/sec, placing demands on the detector technologies

1T
2T

4.6T
2,5T

Production Target / Solenoid
Transport Solenoid

Detector Solenoid

Cosmic ray veto not shown

Calorimeter requirements:

Energy resolution σE/E ~ O(5%) at 105 MeV
Time resolution σ(t) < 500 ps
Position resolution < 1 cm
Adequate rate capability
Operate in a 1T magnetic field in a 10-4 Torr vacuum
Redundant photosensors and DAQ
Survive in the neutron (10 12 n/cm2 ) and gamma

(100 krad) radiation environment of Mu2e
Provide close to full acceptance for conversion

electrons  at 105 MeV 

Tracker requirements:

Momentum resolution σp/p < 180 keV/c at 105 MeV
Adequate rate capability:

20 kHz/cm2 in live window
Tolerate beam flash rate of  3 MHz/cm2 

Have dE/dx capability to distinguish electrons 
from protons

Operate in a 1T magnetic field in a 10-4 Torr vacuum
Provide maximum acceptance for conversion

electrons  at 105 MeV 
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What happens during a microbunch ?

Straw Tracker Crystal CalorimeterStopping Target

Live Window
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Use of pulsed proton beam 
and  a delayed live gate allows 
suppression of  prompt 
backgrounds by many 
orders of magnitude 
Proton pulses must be narrow
Out-of-time protons must be 
suppressed by O (1010)

• Simulations encompass a full  ~1µs, including all the background overlays from the 
beam flash, µ capture products, neutrons, etc. and properly account for contributions 
from previous bunches. 
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What happens during a microbunch ?

• Simulations encompass a full  ~1µs, including all the background overlays from the 
beam flash, µ capture products, neutrons, etc. and properly account for contributions 
from previous bunches. 

Use of pulsed proton beam 
and  a delayed live gate allows 
suppression of  prompt 
backgrounds by many 
orders of magnitude 
Proton pulses must be narrow
Out-of-time protons must be 
suppressed by O (1010)

Live Window
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Straw TrackerStopping Target

(particles with hits within +/-40 ns of signal electron tmean)

signal e-
DIO e-

knock-out protons
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Tracker and calorimeter design

reconstructable 
Tracks

some hits 
in tracker, 
tracks not 
reconstruct
able

no hits in 
tracker
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Both have a central hole to allow DIOs and beam flash events to pass through



Tracker and calorimeter design

reconstructable 
Tracks

some hits 
in tracker, 
tracks not 
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no hits in 
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Panel: 2 layers, 48 straws each Plane: 6 self supporting panels

Straws: 5 mm OD; 15 µm metalized mylar wall

Custom ASIC for time division: 
⌠ ≈ 5 mm at straw center
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Tracker : straws ➯ panels ➯ planes



Station: 2 planes

Tracker: 18 stations
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➯ Stations ➯ Tracker



Panel assembly and straw tensioning
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Calorimeter: two annular disks of CsI crystals

• Disks are spaced apart by ½ wavelength of the pitch of a 105 MeV/c helical track
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 The central hole region in the tracker and
calorimeter allows us to be largely insensitive 
to DIO and beam flash backgrounds

 The calorimeter has two identical annuli,
spaced apart by 700 mm (½ λ of the helical
trajectory of the conversion electron) 

 rinner = 374 mm
router = 660 mm
depth = 10 X0 (200 mm)

 Each annulus contains 
674 square CsI crystals 
with dimensions 
34 x 34 x 200 mm3

 Each crystal is read out 
by two large area 
(14x20 mm2) six element 
UV-extended SiPMs
The analog front end 
electronics is directly 
mounted on the SiPM

 The digital electronics and voltage 
regulators are located in electronics 
crates mounted on the periphery

 Calibration and monitoring are 
provided by a 6 MeV radioactive 
source and a laser system

Ca lor imeter  des ign
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Calorimeter structure exploded view

Calibration source
piping Inner 

support
cylinder

DAQ crates

Outer 
support
cylinder

Roller
feet

FEE support
and cooling
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Three views of a disk

There is no internal crystal support
structure: Tyvek-wrapped crystals are
selected by dimension, leveled and 
shimmed to minimize placement error

The front faces of the disk include
thin Al tubing (à la BABAR) through 
which flows irradiated fluorinert to
provide a 6.13 MeV calibration γ
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Three views of a disk

There is no internal crystal support
structure: Tyvek-wrapped crystals are
selected by dimension, leveled and 
shimmed to minimize placement error

The front faces of the disk include
thin Al tubing (à la BABAR) through 
which flows irradiated fluorinert to
provide a 6.13 MeV calibration γ
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Calorimeter cluster-seeded track finding

Calorimeter-seeded track finding improves 
the relative efficiency for tracks in the signal 
region (103.5 < p <105 MeV/c ) by ~11% 
and is more robust against background

The speed and efficiency of track reconstruction is improved by selecting tracker hits compatible 
with the time ( |Δt| < 50 ns ) and azimuthal angle of calorimeter clusters
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PID: e /µ separation by TOF, E/p
CRV studies show that with a CRV inefficiency of 10-4, an additional rejection factor 
of ~200 is needed in order to have < 0.1 fake events from cosmics in the signal window

Rare cosmic ray muon events can mimic 
a conversion electron signal event
Events of this type can be 
vetoed using the timing  
information from the 
calorimeter

∆t = ttrack – tcluster E/p

A rejection factor of 200 
can be achieved with ~95% 

conversion electron efficiency
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• Achieving best possible energy resolution requires efficient shower clustering
algorithm with detached cluster recovery and pile-up rejection

• Cluster algorithm with detached cluster recovery

• Pile-up rejection using waveform digitization

Calorimeter energy resolution

GEANT4 
simulation
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Calorimeter spatial, time resolution
Spatial resolution
Compare predicted
and Monte Carlo 
positions with signal 
events

Time resolution
Cluster time defined using the 
energy-weighted crystal times

7
GEANT4 

simulation

σx = 6.3 ± 0.2 mm
σy = 5.8 ± 0.2 mm

σt = 109 ± 1 ps
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Extended response SiPMs match CsI spectrum

• Six 6x6mm cells in a 2x3 array
• 50 mm pixels
• Biased in series/parallel

HV

AMP

10
 Ω

165.7 V

10
 Ω

330 Ω

-

+
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Frascati test beam results: CsI/SiPM array
 Test beam with 70-115 MeV electrons 

@ LNF
 51 30x30x200 mm3 CsI crystals 
 Readout: Hamamatsu, SENSL, 

Advansid MPPCs
 Results

 Energy resolution σE/E ≤7% 
dominated byshower leakage 
and beam energy spread

 Time resolution σ(t)=1<200 ps.
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Calibration and monitoring

Source calibration      
tubes

BaF2

1) The BABAR calibration source has been rebuilt to provide 6.13 MeV γ s on demand

2) Laser system to monitor SiPM performance

3) Cosmics + E/p for DIOs at reduced B field
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Cosmic ray veto (four layers)

Covers as much of the transport and detector solenoids as possible
Nonetheless, timing properties of the calorimeter are

required to achieve required cosmic ray rejection
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Signal sensitivity for a three year run

Reconstructed e- momentum

Stopped μ: 5. 8 × 1017

For R = 10-16

Nμe  = 3.94 ± 0.03
NDIO = 0.19 ± 0.01
NOther = 0.19

SES = (2.5 ± 0.1) × 10-17

Errors are statistical only
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COMET Phase I

Stopping
Target
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SES    3 x 10-15

or < 6 x 10-15 @ 90% CL
for 150 days at 3.2 kW
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COMET Phase II

SES (1.0 – 2.6) x 10-17

for 2 x 107 s at 56kW
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COMET schedule
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Z dependence of µ to e conversion
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PIP2/Mu2e II

• PIP2 is an 800 MeV, 120 kW
superconducting linac for
LBNF and the muon campus

• Currently under design
• There is also an active study

of an upgrade of Mu2e 
• An order of magnitude increase 

in muon stops, but only a x3-5 
increase in instantaneous rate

• Detector systems must be upgraded
• Goals:

• If µ→e conversion has been found, use heavier targets to ascertain the
(A, Z)-dependence of conversion rate

• If conversion is not seen, improve sensitivity by an order of magnitude
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Prism/PRIME

Muon
s

PRIS
M

Pion
s

Pion decay 
and Muon transport 

section

Pion capture section

Muon phase-rotation 
section

PRIME

5 
m

P hase R otated I ntense S low M uon source
P R I SM M uon E lect ron convers ion
• A muon storage ring, feeding a COMET-like

channel and detector
• High muon intensity:
• (1011-1012 μ-/s): 

large 6D acceptance (FFAG), 
• Pulsed beam >100 Hz,
• Low momentum, quasi-mono-energetic muons
• Pion contamination <10-18

• Requires a multi-GeV 1-4 MeV proton driver
• Aims for SES- 3×10-19

• Time scale beyond 2030
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Outlook
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• Current limits on charged lepton flavor violation provide useful 
constraints on New Physics models

• Over the next decade, improved τ decay, µ decay, leptonic and 
semileptonic meson decay and µ®e conversion experiments will 
have the sensitivity to probe the regime predicted by many New 
Physics models

• Sensitivities reach beyond what is possible in direct production of 
new particles at the LHC

• Should evidence for CLFV be found, comparison of branching 
ratios and conversion rates would be diagnostic of specific models
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RK and RK*

Z’ leptoquark
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also RK* , with B0K*0


+


-
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Series coupling improves decay time
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 The calorimeter radiation dose is driven by the beam flash 
(the interaction of the proton beam on target). 

 The dose from muon  capture is 10x smaller
 Dose is mainly to the inner radius (up to 400 mm)
 Highest dose/year ~ 10 krad
 Highest n flux/year on crystal. ~ 2x10 11 n /cm2

 Highest dose/year on SIPM ~ 6x1010 n_1Mev eq/cm2

The radiation environment

• Qualify crystals up to 100 krad, 10 12 n/cm2

• Qualify photo-sensors up to 3x1011 n_1MeV/cm2
Includes a safety factor of 3
for a 3 year run 

γ doseneutron flux
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Measured CsI crystal properties
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Radiation-induced noise (PMT+SiPM)

• RIN measurements of preproduction 
crystals from three manufacturers 
at Caltech and LNF are in agreement

• RIN and fast/slow component ratio
are correlated
This will be useful in developing
final acceptance criteria
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