Hadron Scattering with Elongated Boxes

Chris Culver

Department of Physics George Washington University

Scattering from the Lattice: Applications to Phenomenology and Beyond 2018

ም.

2 / 18

(E) ★ E >

- Lattice QCD
 - Andrei Alexandru, Frank Lee
 - Craig Pelissier, Mike Lujan, Dehua Guo, Chris Culver, Hossein Niyazi

Phenomonology

- Michael Doering
- Maxim Mai, Raquel Molina
- Bin Hu, Daniel Sadasivan
- Recent Papers
 - Guo et al. 1605.03993 (ρ)
 - Guo et al. 1803.02897 (σ)
 - Lee, Alexandru 1706.00262 (Lüscher in Elongated Boxes)

3 / 18

- Construct operators
- Compute finite volume energy levels
- $\bullet~$ If elastic two particle scattering $\rightarrow~$ Lüscher
- Otherwise parameterize scattering matrix
- Extract resonance parameter

- Construct operators
- Compute finite volume energy levels
- If elastic two particle scattering \rightarrow Lüscher
- Otherwise parameterize scattering matrix
- Extract resonance parameter

Ensembles

5 / 18

ρ Meson

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

イロト イヨト イヨト イヨト

7 / 18

σ Meson

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

< ∃→

σ Resonance Position

- Conclusion
 - Elongated boxes for cheap access to different momenta
 - Two flavor simulations are phenomenologically interesting
- Outlook for LQCD at GWU
 - Isoscalar channel $f_0(980)$
 - $a_1(1260)$ with $\bar{q}q, \rho\pi, \sigma\pi, \pi\pi\pi$

	Lattice Result	Experimental Result
$m_{ ho}$	766(0.7)(11)	775.49(34)
Γ_{ρ}	150(0.4)(5)	146.2(7)
$Re(\sqrt{s})_{\sigma}$	440(13)(50)	400-550
$\mathit{Im}(\sqrt{s})_\sigma$	240(20)(25)	200-350

$$\rho^{0}(\Gamma_{i}(\boldsymbol{p}),t) = \frac{1}{\sqrt{2}} [\bar{u}(t)\Gamma_{i}(\boldsymbol{p})u(t) - \bar{d}(t)\Gamma_{i}(\boldsymbol{p})d(t)]$$

i	$\Gamma_i(oldsymbol{p})$	$\Gamma_i'(oldsymbol{p})$
1	$\gamma_3 e^{ioldsymbol{p}}$	$\gamma_3 e^{-ip}$
2	$\gamma_4\gamma_3 e^{im p}$	$\gamma_4\gamma_3 e^{-ip}$
3	$\gamma_3 \nabla_j e^{ip} \nabla_j$	$-\gamma_3 \nabla_j e^{-ip} \nabla_j$
4	$\frac{1}{2} \{ e^{ip}, \nabla_3 \}$	$-\frac{1}{2}\{e^{-ip},\nabla_3\}$

$$\pi\pi(\mathbf{p}_1, \mathbf{p}_2) = \frac{1}{\sqrt{2}} \{ \pi^+(\mathbf{p}_1)\pi^-(\mathbf{p}_2) - \pi^-(\mathbf{p}_1)\pi^+(\mathbf{p}_2) \}$$

<ロ> (日) (日) (日) (日) (日)

σ Operator Basis

$$\sigma(\Gamma_i(\boldsymbol{p}), t) = \frac{1}{\sqrt{2}} [\bar{u}(t)\Gamma_i(\boldsymbol{p})u(t) + \bar{d}(t)\Gamma_i(\boldsymbol{p})d(t)]$$

i	$\Gamma_i({m p})$	$\Gamma_i'(oldsymbol{p})$	
1	$1e^{ioldsymbol{p}}$	$1e^{-ip}$	
2	$ abla_i 1 e^{i oldsymbol{p}} abla_i$	$ abla_i 1 e^{-i oldsymbol{p}} abla_i$	
3	$ abla^4_i 1 e^{i oldsymbol{p}} abla^4_i$	$ abla_i^4 1 e^{-i oldsymbol{p}} abla_i^4$	
4	$\gamma_i e^{i \boldsymbol{p}} abla_i$	$\gamma_i e^{-ip} \nabla_i$	

$$\pi \pi(\boldsymbol{p}_1, \boldsymbol{p}_2) = \frac{1}{\sqrt{3}} \{ \pi^+(\boldsymbol{p}_1)\pi^-(\boldsymbol{p}_2) + \pi^-(\boldsymbol{p}_1)\pi^+(\boldsymbol{p}_2) \\ + \pi^0(\boldsymbol{p}_1)\pi^0(\boldsymbol{p}_2) \}$$

- Sigma has Quantum Numbers of Vacuum
- Need to remove vacuum contribution to correlators
- Direct Subtraction
- $\langle O(t_2)O^{\dagger}(t_1)
 angle_{\mathsf{sub}} = \langle O(t_2)O^{\dagger}(t_1)
 angle \langle O(t_2)
 angle \langle O^{\dagger}(t_1)
 angle$
- Implicit Subtraction

•
$$ilde{C}_{ij}(t) = C_{ij}(t+d) - C_{ij}(t)$$

σ Enery Levels

