Implementing a Lüscher Analysis with Multiple Partial Waves and Decay Channels

Andrew Hanlon

Helmholtz-Institut Mainz, JGU

May 15, 2018 HMI Workshop on Scattering

Motivations and Overview

\square use the Lüscher two-particle formalism for studying hadronic resonances
\square develop implementation to be simple yet generalcomputationaly simple fitting strategiesprovide software with all of these featuresmore details (and software) NPB 924, 477 (2017)

The Lüscher Quantization Condition

$$
\operatorname{det}\left[1+F^{(\boldsymbol{P})}(S-1)\right]=0
$$

\square allows access to infinite-volume physics (S-matrix) from finite-volume physics (F-matrix)
$\square F$ matrix elements are known functions

$$
\begin{aligned}
&\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| F^{(\boldsymbol{P})}\left|J m_{J} L S a\right\rangle=\delta_{a^{\prime} a} \delta_{S^{\prime} S} \frac{1}{2}\left\{\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} \delta_{L^{\prime} L}\right. \\
&\left.+\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}} S m_{S}\right\rangle\left\langle L m_{L} S m_{S} \mid J m_{J}\right\rangle W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{P a)}}\right\}
\end{aligned}
$$

\square total momentum \boldsymbol{P}, total angular momentum J, J^{\prime}, orbital angular momentum L, L^{\prime}, spin S, S^{\prime}, channels a, a^{\prime}
$\square W$ can be expressed as sums over the Lüscher zeta functions $\mathcal{Z}_{l m}$

The K-matrix

\square quantization condition relates single energy to entire S-matrix
\square must parameterize S-matrix (except for single channel and single partial wave)
\square easier to parameterize a Hermitian matrix than a unitary matrix
\square introduce the K-matrix

$$
S=(1+i K)(1-i K)^{-1}=(1-i K)^{-1}(1+i K)
$$

\square then introduce \widetilde{K} via

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{c m}\right)=u_{a^{\prime}}^{-L^{\prime}-\frac{1}{2}} \widetilde{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{c m}\right) u_{a}^{-L-\frac{1}{2}}
$$the u_{a} are defined by (here L is size of the box)

$$
E_{c m}=\sqrt{\left(\frac{2 \pi}{L} u_{a}\right)^{2}+m_{1 a}^{2}}+\sqrt{\left(\frac{2 \pi}{L} u_{a}\right)^{2}+m_{2 a}^{2}}
$$$\widetilde{K}^{-1}$ elements expected to be smooth function of $E_{c m}$

The "Box Matrix" and Block Diagonalization

\square rewrite quantization condition in terms of \widetilde{K}

$$
\operatorname{det}\left(1-B^{(\boldsymbol{P})} \widetilde{K}\right)=\operatorname{det}\left(1-\widetilde{K} B^{(\boldsymbol{P})}\right)=0
$$

\square block diagonalize in the little group irreps

$$
|\Lambda \lambda n J L S a\rangle=\sum_{m_{J}} c_{m_{J}}^{J(-1)^{L} ; \Lambda \lambda n}\left|J m_{J} L S a\right\rangle
$$

\square little group irrep Λ, irrep row λ, occurrence index n
\square group theoretical projections with Gram-Schmidt used to obtain coefficients
\square in block-diagonal basis, box matrix has form
$\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| B^{(\boldsymbol{P})}|\Lambda \lambda n J L S a\rangle=\delta_{\Lambda^{\prime} \Lambda} \delta_{\lambda^{\prime} \lambda} \delta_{S^{\prime} S} \delta_{a^{\prime} a} B_{J^{\prime} L^{\prime} n^{\prime} ; J L n}^{\left(\boldsymbol{P} \Lambda_{B} S a\right)}(E)$
$\square \Lambda_{B}=\Lambda$ only if $\eta_{1 a}^{P} \eta_{2 a}^{P}=1$

K-Matrix Parametrizations

$\square \widetilde{K}$-matrix for $(-1)^{L+L^{\prime}}=1$ has form

$$
\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| \widetilde{K}|\Lambda \lambda n J L S a\rangle=\delta_{\Lambda^{\prime} \Lambda} \delta_{\lambda^{\prime} \lambda} \delta_{n^{\prime} n} \delta_{J^{\prime} J} \mathcal{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)}\left(E_{\mathrm{cm}}\right)
$$common parametrization

$$
\mathcal{K}_{\alpha \beta}^{(J)-1}\left(E_{\mathrm{cm}}\right)=\sum_{k=0}^{N_{\alpha \beta}} c_{\alpha \beta}^{(J k)} E_{\mathrm{cm}}^{k}
$$

$\square \alpha, \beta$ compound indices for (L, S, a)another common parametrization

$$
\mathcal{K}_{\alpha \beta}^{(J)}\left(E_{\mathrm{cm}}\right)=\sum_{p} \frac{g_{\alpha}^{(J p)} g_{\beta}^{(J p)}}{E_{\mathrm{cm}}^{2}-m_{J p}^{2}}+\sum_{k} d_{\alpha \beta}^{(J k)} E_{\mathrm{cm}}^{k},
$$

Fitting Subtleties

\square goal: obtain best-fit estimates for paramters of \widetilde{K} or \widetilde{K}^{-1}
$\square \chi^{2}=\sum_{i j} \mathcal{E}\left(r_{i}\right) \sigma_{i j}^{-1} \mathcal{E}\left(r_{j}\right)$
\square residuals $r=\boldsymbol{R}-\boldsymbol{M}(\boldsymbol{\alpha}, \boldsymbol{R})$
\square observables R, model parameters α
$\square i$-th component of $\boldsymbol{M}(\boldsymbol{\alpha}, \boldsymbol{R})$ gives model prediction for i-th component of \boldsymbol{R}
\square if model depends on any observables, covariance matrix must be recomputed and inverted each time parameters α adjusted during minimization!
\square if model independent of all observables $\operatorname{cov}\left(r_{i}, r_{j}\right)=\operatorname{cov}\left(R_{i}, R_{j}\right)$ simplifying minimization

Fitting: Spectrum Method

choose $E_{\mathrm{cm}, k}$ as observables\square model predictions come from solving quantization condition for αproblems:
\square root finding requires many computations of zeta functions
\square model predictions depend on observables $m_{1 a}, m_{2 a}, L, \xi$ so MUST recompute covariance during minimization"Lagrange multiplier" trick removes obs. dependence in model
\square include $m_{1 a}, m_{2 a}, L, \xi$ as both observables and model parameters
\square observations

$$
\text { Observations } R_{i}: \quad\left\{E_{\mathrm{cm}, k}^{(\mathrm{obs})}, m_{j}^{(\mathrm{obs})}, L^{(\mathrm{obs})}, \xi^{(\mathrm{obs})}\right\}
$$model parameters

Model fit parameters $\alpha_{k}: \quad\left\{\kappa_{i}, m_{j}^{(\text {model })}, L^{(\text {model })}, \xi^{(\text {model })}\right\}$,

Fitting: Determinant Residual Method

introduce quantization determinant as residual\square better to use function of matrix A with real parameter μ :

$$
\Omega(\mu, A) \equiv \frac{\operatorname{det}(A)}{\operatorname{det}\left[\left(\mu^{2}+A A^{\dagger}\right)^{1 / 2}\right]}
$$

\square residuals

$$
r_{k}=\Omega\left(\mu, 1-B^{(\boldsymbol{P})}\left(E_{\mathrm{cm}, k}^{(\mathrm{obs})}\right) \widetilde{K}\left(E_{\mathrm{cm}, k}^{(\mathrm{obs})}\right)\right)
$$

\square do not need to perform zeta computations during minimizationmust recompute covariance matrix during minimizationcovariance recomputation still simpler than root finding required in spectrum method

Conclusion

\square introduced implementation of Lüscher two-particle formalism that is simple while still general
\square new fitting strategy: determinant residual method
\square software available made available to the public
\square successfully applied to $\rho, K^{*}(892)$, and Δ

