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INTRO: LATTICE QCD AND CUTOFF EFFECTS

LQCD
I is a regularised version of a QFT

fundamental variables Aµ(x)→ Uµ(x)

I It allows one to do non-perturbative computations from first principles
using stochastic methods, i.e. Monte Carlo simulations

〈O〉 =
1
Z

∫
DU O(U)e−SG[U] numerical computation−−−−−−−−−−−−→ 〈O〉 ≈ 1

N

N∑
i=1

O({U}i)

I Minimising cut-off effects in order to make reliable extrapolations of
numerical data to the continuum limit
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GRADIENT FLOW IN THE CONTINUUM

I Gradient flow observables have many interesting applications because
they are easy to measure on the lattice with high statistical precision. We

1. define Bµ(x, t)
2. built observables with the field Bµ(x, t)
3. consider expectation value of these observables.

I The gradient flow is defined by a mapping Aµ(x)→ Bµ(x, t)

dBµ(x, t)
dt

= DνGνµ(x, t) ∼
(
−δSYM[B]

δBµ

)
Bµ(x, t = 0) = Aµ(x)

defined for t > 0, where

I Bµ(x, t) is a new gauge field depending on the flow time
I differentiation with respect to flow time t
I Gµν = ∂µBν − ∂νBµ + [Bµ,Bν ]
I Dµ = ∂µ + [Bµ, ·]
I Aµ the fundamental gauge field in QCD
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GRADIENT FLOW EQUATION: FIRST ORDER SOLUTION

I Interpretation from perturbation theory
I

Bµ(x, t) =
∑

n
Bµ,n(x, t)gn

0

At leading order in g0 , after gauge fixing, we get:

∂Bµ
∂t

= ∂2Bµ + non linear terms

I the flow equation is the heat equation with solution

Bµ(x, t) =
∫

dDy Aµ(y)Kt(x− y) + non linear terms

I where

Kt(x) =
e−

|x|2

4t

(4πt)
D
2

.

I smearing radius
√

2Dt

[M. Lüscher 2010]
I It is a smoothing process (smearing of gauge links known in LQCD)

[C. Morningstar M. Peardon 2003]
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DEFINITION OF A GRADIENT FLOW OBSERVABLE

I The easiest gauge invariant object we can define is the action density

E(x, t) = −1
2

tr {Gµν(x, t)Gµν(x, t)}

I significant advantage: at t > 0 this observable is renormalised !
(unlike E(x, 0) which has divergences)

I In perturbation theory

〈E(x, t)〉 =
3

16π2t2 (g2
M̄S + O(g4

M̄S))

[M. Lüscher 2010]

I Non-perturbatively

〈E(x, t)〉 =
1

4Z

∫
DAµ Ga

µν(x, t)Ga
µν(x, t) e−S[A]

I Non-perturbative definition of the coupling

ḡ2
GF = N−1t2〈E(x, t)〉

N normalisation of the coupling ḡ2
GF = g2

0 + O(g4
0)

5 / 17



INTRODUCTION GRADIENT FLOW IMPROVEMENT RESULTS SUMMARY AND ONGOING STUDIES

USES OF THE GRADIENT FLOW OBSERVABLES
I computation of the coupling and quark masses

[M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint, R. Sommer 2018]
[A. Hasenfratz 2014]

I definition of the energy momentum tensor
[F. Capponi, L. Del Debbio, A. Patella, A. Rago 2016]

I small flow time expansion
[N. Husung, M. Koren, P. Krah, and R. Sommer 2017] [H. Suzuki 2015 ]

I topological susceptibility
[M. Cè, M. Garcı́a Vera, L. Giusti, S. Schaefer 2016]

I scale setting t2〈E(t)〉|t=t0 = 0.3
[M. Lüscher 2010 ]

〈Eclov(t)〉 or 〈Epl(t)〉

Advantage: avoiding many
renormalisation problems and
having higher statistical precision

Problem to solve: large cutoff effects

[M. Bruno et al. 2016]
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LATTICE DISCRETISATIONS AND SYMANZIK IMPROVEMENT

I Different discretisations on the lattice correspond to the same quantity in
the continuum (i.e. taking the limit a→ 0)

I ⇒ use the universality of continuum limit to minimise the lattice artifact
(for ex. the action on the lattice is not unique)

I A systematic way to build improved quantities is the so-called
Symanzik improvement program: adding local counterterms to the
action S

Seff = S0 + a2S2 + ... (pure gauge)

and the same procedure applies to local composite fields φ

Oeff = O0 + a2O2 + ...

⇒ 〈O〉lat in such a way that the leading cutoff effects are eliminated in all
observables [K. Symanzik 1983]

I Balance between the complexity of the expression and the behaviour in
the limit a→ 0
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SOURCES OF CUTOFF EFFECTS AND IMPROVEMENT
I The theory with the flowed field Bµ(x, t) is not local and Symanzik improvement

for a LOCAL theory⇒ reformulate the theory in 4 + 1 dimensions to apply
standard machinery for renormalisation and power counting.

I Removing cutoff effects coming from the sources:
1. action
2. gradient flow equation
3. observable
4. single additional counterterm compared to the pure gauge theory in 4 dim

It corresponds to a modified initial condition for the flow equation

Vµ(t, x)|t=0 = ecbg2
0∂x,µSg[U]Uµ(x)

this introduces the cb dependence we want to study numerically

[A. Ramos and S. Sint 2015]

I On the lattice V = L3T with
Schrödinger Functional bc’s

Rainer Sommer and Ulli Wol↵ / Nuclear Physics B Proceedings Supplement 00 (2015) 1–30 8

space

(LxLxL box with periodic b.c.)

time

0

L

C’

C

Figure 4: The Schrödinger functional geometry.

to emerge as an operator relation that can be inserted
into matrix elements. It is very advantageous to focus
on this relation to actually define the renormalized mass
in the improved theory, once the improved renormalized
currents have been introduced already. The finite size
Schrödinger functional scheme that we introduce next
is a very convenient setting to do so.

Non-perturbative techniques to determine the im-
provement coe�cients were developed in the quenched
approximation [18, 19, 20], and later applied for the two
and three flavor theories in [21, 22, 23, 24]. Some coef-
ficients such as bP remain unknown non-perturbatively
but can be taken from one-loop perturbation theory
[25, 26].

4. The Schrödinger functional

For the Schrödinger functional (SF) [27] – and later
the associated renormalization scheme – we consider a
finite portion of Euclidean space time with spatial ex-
tent L and temporal size T as depicted in figure 4. In
the spatial directions µ = k = 1, 2, 3 we impose periodic
boundary conditions x ⌘ x ± Lk̂ while Dirichlet bound-
ary conditions fix certain field components at x0 = 0,T
to externally given values. The SF can be defined in
the continuum and is in fact studied by dimensionally
regularized 1-loop perturbation theory in [27]. As we
here want to mainly discuss non-perturbative computa-
tions we prefer to immediately start on the lattice, where
some features of the SF even become simpler to discuss.
This implies, of course, that both L/a and T/a must be
integer.

4.1. Gauge sector
In the standard form of the SF the Dirichlet condi-

tions for the gluon field U(x, µ) are

U(x, k)|x0=0 = exp(aCk), (38)
U(x, k)|x0=T = exp(aC0k), (39)

where Ck,C0k are constant Abelian vector potentials in
the form of diagonal traceless imaginary matrices. Note
that temporal links U(x, 0) exist as integration variables
for x0 = 0, a, . . . ,T�a and are not subject to any bound-
ary conditions.

A possible interpretation of this Euclidean path inte-
gral with boundaries is in the Hamiltonian or transfer
matrix formalism. It goes with a Schrödinger represen-
tation of states in Hilbert space as wave function(al)s on
(three dimensional) spatial configurations U(x, k). We
denote a state concentrated on a fixed field configura-
tion U(x, k) ⌘ exp(aCk) by a ket |Ci (like |xi-states in
quantum mechanics). Then the SF partition function Z
is equal to the matrix element

Z(C0; C) = hC0|e�THP|Ci, (40)

where e�aH is the transfer matrix and P is a projector to
gauge invariant states [28].

From the Euclidean point of view in the SF setup the
time direction is distinguished from the others and there
is no translation invariance in the time-direction. There-
fore in this case we generalize the Wilson action to

S Wsf = �
X

C2S0

w(C)Retr [1 � P(C)]. (41)

Here the novelty is the plaquette dependent weight w
for which the transfer matrix formalism suggests to take
w(C) = 1 for all plaquettes except the purely spatial
ones on the boundary where w(C) = 1/2. This is so
because it is natural to symmetrically distribute these
contributions to the two adjacent transfer matrix factors
(as for the potential V(x) in quantum mechanics).

In the Symanzik e↵ective action additional terms rep-
resenting cuto↵ e↵ects are possible due to the SF geom-
etry. In the continuum they are given by three dimen-
sional integrals over boundary planes with the dimen-
sion four densities tr(F0kF0k), tr(FklFkl) as integrands.
These contributions are associated with O(a) boundary
cuto↵ e↵ects. For Symanzik improvement these terms
are discretized and included in the lattice action with
adjustable coe�cients. For S Wsf this is incorporated
by two di↵erent nontrivial weights for space-time and
for space-space plaquettes at the boundary. With our
Abelian boundary fields the latter type does not con-
tribute and we set

w(C) = ct(g0) = 1 + c(1)
t g2

0 + . . . (42)

for 0k plaquettes touching the boundary and w(C) = 1
for all others. In principle ct(g0) has to be fixed by
yet another improvement condition. In practice these
terms can at present only be set to perturbative values

[M. Luscher, R. Narayanan, P. Weisz, and U. Wolff 1992]
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ACTION AND GRADIENT FLOW EQUATION ON THE LATTICE

I 1. discretisation of the action
→Wilson action → improved LW action

SW[U] =
1
g2

0

∑
p

{1−U(p)} S[U] =
1
g2

0

1∑
k=0

ck

∑
C∈Sk

w(C) tr{1−U(C)}

I 2. discretisation of the flow equation
→Wilson flow

∂tVµ(t, x) = −∂x,µ(g2
0SW[V])Vµ(t, x), Vµ(0, x) = Uµ(x)

→ improved Zeuthen flow

a2∂tVµ(t, x) = −g2
0(1+

a2

12
DµD∗µ)∂x,µ(SLW[V])Vµ(t, x), Vµ(0, x) = Uµ(x)

∂x,µ differential operator with respect to the link variable Vµ(t, x) = exp{aBµ}
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COMPONENTS OF THE OBSERVABLE

I 3. discretisation of the observable

continuum E(x, t) = −1
2

tr {Gµν(x, t)Gµν(x, t)}

→clover definition of the field strength tensor

Ecl(t, x) = −1
2

∑
µν

tr {Gcl
µνGcl

µν}

at L.O. Gcl
µν = ∂̃µ(1− 1

2
a ∂∗ν )Bν − ∂̃ν(1− 1

2
a ∂∗µ)Bµ

Rainer Sommer and Ulli Wol↵ / Nuclear Physics B Proceedings Supplement 00 (2015) 1–30 7

see figure 3. An improvement condition (generalized
renormalization condition) that has to hold in the con-
tinuum theory has to be enforced to determine cSW(g0).

x

xµ

ν

Figure 3: The clover leaf representation F̂µ⌫(x) of Fµ⌫(x).

The number of terms and coe�cients required at
leading order is small enough that we can and shall im-
plement complete on-shell O(a) improvement. This is
not practicable any more at the next order a2. If one im-
plements however only some part of the improvement
terms with some prescription for the coe�cients one
still obtains a legal variant discretization di↵erent from
the one without extra terms. Numerical experience sug-
gests that the addition of a rectangle term to the gluon
plaquette action with a strength suggested by improving
at tree level of perturbation theory leads to a variant ac-
tion with better properties than the pure plaquette form
although artefacts are O(a2) in both cases. This action,
called tree level improved Lüscher-Weisz action, gener-
alizes (14) and reads

S LW = �

1X

i=0

ci

X

C2Si

Re tr [1 � P(C)]. (27)

Here S0 is the set of all di↵erent (unoriented) plaquette
(1⇥1) loops on the lattice and P(C) a parallel transporter
around it. Hence, for c0 = 1, c1 = 0 this action would
coincide with S W. The second term involves the set S1
of all di↵erent planar 1⇥2 loops (rectangles) and for the
tree level improved Lüscher-Weisz action the weights
assume the values

c0 =
5
3
, c1 = � 1

12
. (28)

3.3. Improved currents and renormalization

Quark currents are observables of primary impor-
tance in QCD. In particular the isovector axial current
formed from the two light quarks

Aa
µ(x) =  ̄�µ�5⌧

a (x) (29)

and the pseudo-scalar density

Pa(x) =  ̄�5⌧
a (x) (30)

enter into the discussion of chiral symmetry. They are
here given first as bare currents in terms of bare fields
at the same lattice site and Pauli matrices ⌧a operate on
the up and down quarks. As discussed in the previous
subsection for O(a) improvement these dimension three
operators can mix with dimension four terms of the right
symmetry. It turns out that there is no such term for Pa,
but the improved axial current can mix with the gradient
of Pa and is hence given by

(AI)a
µ(x) = Aa

µ(x) + acA@̃µPa. (31)

Here @̃µ = (@µ + @⇤µ)/2 is the symmetrized lattice deriva-
tive and cA(g0) is an improvement coe�cient that has to
be fixed by another improvement condition. It will turn
out that its perturbative expansion starts at O(g2

0).
In [16] the nontrivial interplay between the use of a

massless renormalization scheme and improvement is
discussed in some detail. In such a scheme all renor-
malization conditions are formulated at a normalization
scale µ. For nonzero, but for simplicity degenerate,
quark masses m0 the relation between bare and renor-
malized coupling must be taken as

g2
R = g̃2

0Zg(g̃2
0, aµ), g̃2

0 = g2
0(1 + bgamq). (32)

Here bg(g0) is an improvement constant that eliminates
O(a) e↵ects at nonzero mq which in turn is the sub-
tracted quark mass

mq = m0 � mc(g0) (33)

such that mq = 0 implies a vanishing physical mass.
The term with bg reflects a dimension five term in the
Symanzik e↵ective action proportional to mtr(F2

µ⌫). It
is only with this term (and the correct bg) that in the
process of expressing physical observables in terms of
gR not only divergences but also linear lattice artefacts
are eliminated.

In a similar way the usual multiplicative mass renor-
malization must be replaced by

mR = m̃qZm(g̃2
0, aµ), m̃q = mq(1 + bmamq). (34)

Quite similar formulas follow for the current renormal-
izations

(AR)a
µ = ZA(1 + bAamq)(AI)a

µ, (35)
(PR)a = ZP(1 + bPamq)Pa. (36)

If in the continuum limit the chiral symmetry group
SU(Nf ) ⇥ SU(Nf ) is recovered up to finite mass e↵ects,
then we expect the PCAC relation

@µ(AR)a
µ = 2mR(PR)a (37)

→plaquette definition of the field strength tensor

Epl(t, x) = − a−4

2

∑
µν

[tr(Pµν(t, x) + Pµν(t, x)†)− 2N]

at L.O. Gpl
µν = ∂µBν − ∂νBµ

lattice derivatives: ∂̃ symm combination, ∂∗ backward, ∂ forward
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OBSERVABLE ON THE LATTICE

Splitting colour magnetic (spatial) and colour electric (mixed) components

E(t, x) = EMAG(t, x) + EEL(t, x)

EMAG(t, x) = −1
2

∑
k,l

tr(GklGkl)

EEL(t, x) = −1
2

∑
k

(tr(G0kG0k) + tr(G0kG0k))

→ improved observables

I magnetic Eimp
MAG = 4

3 Epl
MAG + 1

3 Ecl
MAG [A. Ramos and S. Sint 2015]

I electric Eimp
EL = ẼEL − 1

6 a2∂2
0 ẼEL where ẼEL = 4

3 Epl−sym
EL + 1

3 Ecl
EL

4. What about cb ?
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PERTURBATIVE MODEL: COUPLING AT ORDER g2
0

I Non-perturbative definition of the coupling ḡ2
GF = N−1t2〈E(x0, t)〉

I Perturbative expansion of 〈E(x0, t)〉

〈E(x0, t)〉 = E0g2
0 + O(g4

0)

E0 =
g2

0

2
〈∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νBa
µ,1〉

I numerical computation of the normalisation factorN = t2E0 at L.O.,
which means computing the coupling at L.O.

t2〈Emag(t, x)〉|√8t=cL,x0= T
2

= NLAT(c,
a
L

)ḡ2
GF(L)

[P. Fritzsch A. Ramos 2013]

I study of not only Wilson flow but also improved Zeuthen flow,
use of advantageous setup -expectation:

I c∗b = 0 improved (LW) action - improved (Z) flow - improved (OBS) mag,el
I behavoiur within the improvement: N LAT = NCONT + O(a4)
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PERTURBATIVE MODEL: COLOUR MAGNETIC COMPONENT

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

(𝐿
/𝑎

)2 (
𝑁

𝐿𝐴
𝑇

−
𝑁

𝐶
𝑂

𝑁
𝑇

)

(𝑎/𝐿)2

LW(action) Z(flow) IMP(obs) 0.3 𝑐𝑏 = 0
LW(action) W(flow) IMP(obs) 0.3 𝑐𝑏 = 0

W(action) Z(flow) IMP(obs) 0.3 𝑐𝑏 = 0
LW(action) Z(flow) CL(obs) 0.3 𝑐𝑏 = 0
LW(action) Z(flow) PL(obs) 0.3 𝑐𝑏 = 0

NLAT(c, a
L ) = t2〈Emag(t, x)〉|c=0.3,x0= T

2
LW (action) Z(flow) IMP(obs) O(a2) improved

improved (action)- improved (flow)- improved (observable)⇒

⇒ c∗b = 0 realises full O(a2) improvement
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PERTURBATIVE MODEL: WILSON ACTION NOT IMPROVED

I Wilson action, NOT improved⇒ counterterm basis incomplete!
I Consider the Zeuthen improved flow and a set of 12 improved observables:

〈Emag(t, x0)〉 and 〈Eel(t, x0)〉

both at c = 0.2, 0.3, 0.4

where c =
√

8t
L =

spreading radius
lattice size

and at x0 = T
2 ,

T
4

I Let’s fix c∗b(mag@0.3) that minimise cutoff effects in one observable Emag at c = 0.3.

Does this c∗b(mag@0.3) reduce the O(a2) effects in the other flow observables?
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PERTURBATIVE MODEL: c∗b(mag@0.3) EFFECT ON ALL OTHER OBSERVABLES

W(act)-Z(flow)-IMP(obs) c∗b(mag@0.3) by definition cancel cutoff effects in Emag@0.3,

green line. It reduces the O(a2) effetcs in all other observables: comparing cb = 0 (red)
with c∗b(mag@0.3) (blue) we see both the spread and the slope are reduced.

Does this work beyond perturbation theory?
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NON-PERTURBATIVE STUDY

I Analysis set of data [data set obtained from A. Ramos and M. Dalla Brida]

The GF coupling is sensitive to different topological charge sectors
Q(t) = 1

16π2

∑
x Gµν(x, t)G̃µν(x, t)

⇒Modified definition of the GF coupling

ḡ2
GF,0 = N−1t2 〈E(t)δQ,0〉

〈δQ,0〉

∣∣∣∣
t= c2L2

8

[P. Fritzsch A. Ramos and F. Stollenwerk 2013]

I Extrapolations to the continuum of the observables at different values of
c = 8t

L = 0.2, 0.3, 0.4
I EMAG(t, x), EEL(t, x), adding more observables ∂2

0 T2EMAG(t, x), ∂2
0 T2EEL(t, x)

I Tuning cb coefficient in the simulations...
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SUMMARY AND ONGOING STUDIES

I Gradient flow observables have many useful applications because they
are finite at t > 0, after the usual renormalisation of bare parameters.
(One of the application is the study of the strong coupling)

I The drawback is that they have large cutoff effects. We study how to
remove/minimise using Symanzik improvement program. In particular
we test numerically the 4th source of them tuning the cb parameter

I Perturbative study: we confirm numerically
I the expected behaviour within the improvement for both magnetic

EMAG(t, x) and electric EEL(t, x) components: NLAT = NCONT + O(a4)
I the theoretical expectation for the cb value at L.O. with improved quantities
I we study what the effect of c∗b(mag@0.3) on other observables when using

Wilson action and we see reduced cutoff effects!
I Non-perturbative study [currently running...]

I Analysis of both magnetic and electric components for cb = 0 and
extrapolation to the continuum limit

I We are simulating other values cb to see if the hypothesis of using c∗b(fixed obs)
in other observable to realise the improvement works beyond
perturbation theory.

Thank You!
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