Cut-off effects in gradient flow observables

Argia Rubeo

HMI meeting

Scattering from the Lattice

15 May 2018

INTRODUCTION	GRADIENT FLOW	Improvement	RESULTS	SUMMARY AND ONGOING STUDIES

OUTLINE

GRADIENT FLOW

Improvement

INTRO: LATTICE QCD AND CUTOFF EFFECTS

LQCD

▶ is a regularised version of a QFT

fundamental variables $A_{\mu}(x) \rightarrow U_{\mu}(x)$

 It allows one to do non-perturbative computations from first principles using stochastic methods, i.e. Monte Carlo simulations

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \ O(U) e^{-S_{G}[U]} \xrightarrow{\text{numerical computation}} \langle O \rangle \approx \frac{1}{N} \sum_{i=1}^{N} O(\{U\}_{i})$$

 Minimising cut-off effects in order to make reliable extrapolations of numerical data to the continuum limit

GRADIENT FLOW IN THE CONTINUUM

- Gradient flow observables have many interesting applications because they are easy to measure on the lattice with high statistical precision. We
 - **1**. define $B_{\mu}(x, t)$
 - 2. built observables with the field $B_{\mu}(x, t)$
 - 3. consider expectation value of these observables.
- The gradient flow is defined by a mapping

$$A_{\mu}(x) \rightarrow B_{\mu}(x, t)$$

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t) \sim \left(-\frac{\delta S_{YM}[B]}{\delta B_{\mu}}\right)$$
$$B_{\mu}(x,t=0) = A_{\mu}(x)$$

defined for $t \ge 0$, where

- $B_{\mu}(x, t)$ is a new gauge field depending on the flow time
- differentiation with respect to flow time t

$$\bullet \quad G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$$

$$\blacktriangleright D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$

• A_{μ} the fundamental gauge field in QCD

INTRODUCTION	GRADIENT FLOW	Improvement	Results	SUM

GRADIENT FLOW EQUATION: FIRST ORDER SOLUTION

Interpretation from perturbation theory

$$B_{\mu}(x,t) = \sum_{n} B_{\mu,n}(x,t) g_0^n$$

At leading order in g_0 , after gauge fixing, we get:

$$\frac{\partial B_{\mu}}{\partial t} = \partial^2 B_{\mu} + \text{ non linear terms}$$

the flow equation is the heat equation with solution

$$B_{\mu}(x,t) = \int d^{D}y A_{\mu}(y) K_{t}(x-y) + \text{ non linear terms}$$

where

►

$$K_t(x) = rac{e^{-rac{|x|^2}{4t}}}{(4\pi t)^{rac{D}{2}}}.$$

• smearing radius $\sqrt{2Dt}$

[M. Lüscher 2010]

It is a smoothing process (smearing of gauge links known in LQCD)

[C. Morningstar M. Peardon 2003]

NTRODUCTION	
-------------	--

GRADIENT FLOW

DEFINITION OF A GRADIENT FLOW OBSERVABLE

> The easiest gauge invariant object we can define is the action density

$$E(x,t) = -\frac{1}{2} \operatorname{tr} \{ G_{\mu\nu}(x,t) G_{\mu\nu}(x,t) \}$$

- significant advantage: at t > 0 this observable is renormalised ! (unlike E(x, 0) which has divergences)
- In perturbation theory

$$\langle E(x,t) \rangle = \frac{3}{16\pi^2 t^2} (g_{\bar{M}S}^2 + O(g_{\bar{M}S}^4))$$

[M. Lüscher 2010]

Non-perturbatively

$$\langle E(x,t)\rangle = \frac{1}{4\mathcal{Z}} \int \mathcal{D}A_{\mu} G^{a}_{\mu\nu}(x,t) G^{a}_{\mu\nu}(x,t) \ e^{-S[A]}$$

Non-perturbative definition of the coupling

$$\bar{g}_{GF}^2 = \mathcal{N}^{-1} t^2 \langle E(x,t) \rangle$$

 \mathcal{N} normalisation of the coupling $\bar{g}_{GF}^2 = g_0^2 + O(g_0^4)$

6/17

scale setting

Advantage: avoiding many renormalisation problems and having higher statistical precision

Problem to solve: large cutoff effects

 $t^2 \langle E(t) \rangle |_{t=t_0} = 0.3$ $\langle E^{clov}(t) \rangle$ or $\langle E^{pl}(t) \rangle$ m ~ 420 MeV + m_~ 290 MeV

1.12

1.04

0.96 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

to clov/to plaq 1.08

[F. Capponi, L. Del Debbio, A. Patella, A. Rago 2016]

small flow time expansion [N. Husung, M. Koren, P. Krah, and R. Sommer 2017] [H. Suzuki 2015]

- topological susceptibility

[M. Cè, M. García Vera, L. Giusti, S. Schaefer 2016]

a²/to

[M. Bruno et al. 2016]

USES OF THE GRADIENT FLOW OBSERVABLES

computation of the coupling and quark masses

definition of the energy momentum tensor

[M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint, R. Sommer 2018]

[A. Hasenfratz 2014]

►

LATTICE DISCRETISATIONS AND SYMANZIK IMPROVEMENT

- ► Different discretisations on the lattice correspond to the same quantity in the continuum (i.e. taking the limit *a* → 0)
- ► ⇒ use the universality of continuum limit to minimise the lattice artifact (for ex. the action on the lattice is not unique)
- A systematic way to build improved quantities is the so-called Symanzik improvement program: adding local counterterms to the action S

$$S_{eff} = S_0 + a^2 S_2 + \dots \qquad \text{(pure gauge)}$$

and the same procedure applies to local composite fields ϕ

$$O_{eff} = O_0 + a^2 O_2 + \dots$$

 $\Rightarrow \langle O \rangle^{lat}$ in such a way that the leading cutoff effects are eliminated in all observables [K. Symanzik 1983]

► Balance between the complexity of the expression and the behaviour in the limit $a \rightarrow 0$

SOURCES OF CUTOFF EFFECTS AND IMPROVEMENT

- ► The theory with the flowed field $B_{\mu}(x, t)$ is not local and Symanzik improvement for a LOCAL theory \Rightarrow reformulate the theory in 4 + 1 dimensions to apply standard machinery for renormalisation and power counting.
- Removing cutoff effects coming from the sources:
 - 1. action
 - 2. gradient flow equation
 - 3. observable
 - 4. single additional counterterm compared to the pure gauge theory in 4 dim

It corresponds to a modified initial condition for the flow equation

$$V_{\mu}(t,x)|_{t=0} = e^{c_b g_0^2 \partial_{x,\mu} S_g[U]} U_{\mu}(x)$$

this introduces the c_b dependence we want to study numerically

```
[A. Ramos and S. Sint 2015]
```

• On the lattice $V = L^3 T$ with Schrödinger Functional bc's

[M. Luscher, R. Narayanan, P. Weisz, and U. Wolff 1992]

INTRODUCTION GRADIENT FLOW IMPROVEMENT RESULTS SUMMARY AND ONGOING STUDIES

ACTION AND GRADIENT FLOW EQUATION ON THE LATTICE

► 1. discretisation of the action → Wilson action

 \rightarrow improved LW action

$$S_{W}[U] = \frac{1}{g_{0}^{2}} \sum_{p} \{1 - U(p)\} \qquad S[U] = \frac{1}{g_{0}^{2}} \sum_{k=0}^{1} c_{k} \sum_{C \in S_{k}} w(C) tr\{1 - U(C)\}$$

► 2. discretisation of the flow equation
 → Wilson flow

$$\partial_t V_{\mu}(t,x) = -\partial_{x,\mu}(g_0^2 S_W[V]) V_{\mu}(t,x), \qquad V_{\mu}(0,x) = U_{\mu}(x)$$

 \rightarrow improved Zeuthen flow

$$a^{2}\partial_{t}V_{\mu}(t,x) = -g_{0}^{2}(1 + \frac{a^{2}}{12}D_{\mu}D_{\mu}^{*})\partial_{x,\mu}(S_{LW}[V])V_{\mu}(t,x), \qquad V_{\mu}(0,x) = U_{\mu}(x)$$

 $\partial_{x,\mu}$ differential operator with respect to the link variable $V_{\mu}(t,x) = exp\{aB_{\mu}\}$

INTRODUCTION	GRADIENT FLOW	Improvement	RESULTS	SUMMARY AND ONGOING STUDIES

COMPONENTS OF THE OBSERVABLE

▶ 3. discretisation of the observable

continuum
$$E(x,t) = -\frac{1}{2} \operatorname{tr} \{G_{\mu\nu}(x,t)G_{\mu\nu}(x,t)\}$$

 \rightarrow clover definition of the field strength tensor

$$E^{cl}(t,x) = -\frac{1}{2} \sum_{\mu
u} \operatorname{tr} \{ G^{cl}_{\mu
u} G^{cl}_{\mu
u} \}$$

at L.O.
$$G_{\mu\nu}^{cl} = \tilde{\partial}_{\mu} (1 - \frac{1}{2}a \,\partial_{\nu}^*) B_{\nu} - \tilde{\partial}_{\nu} (1 - \frac{1}{2}a \,\partial_{\mu}^*) B_{\mu}$$

 \rightarrow plaquette definition of the field strength tensor

$$E^{pl}(t,x) = -\frac{a^{-4}}{2} \sum_{\mu\nu} [\operatorname{tr}(P_{\mu\nu}(t,x) + P_{\mu\nu}(t,x)^{\dagger}) - 2N]$$

at L.O.
$$G^{pl}_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

lattice derivatives: $\tilde{\partial}$ symm combination, ∂^* backward, ∂ forward

INTRODUCTION	GRADIENT FLOW	IMPROVEMENT	RESULTS	SUMMARY AND ONGOING STUDIES
0				

OBSERVABLE ON THE LATTICE

Splitting colour magnetic (spatial) and colour electric (mixed) components

$$E(t, x) = E_{MAG}(t, x) + E_{EL}(t, x)$$

$$E_{MAG}(t,x) = -\frac{1}{2} \sum_{k,l} \operatorname{tr}(G_{kl}G_{kl})$$

$$E_{EL}(t,x) = -\frac{1}{2} \sum_{k} \left(\operatorname{tr}(G_{0k}G_{0k}) + \operatorname{tr}(G_{0k}G_{0k}) \right)$$

- \rightarrow improved observables
 - magnetic $E_{MAG}^{imp} = \frac{4}{3}E_{MAG}^{pl} + \frac{1}{3}E_{MAG}^{cl}$ [A. Ramos and S. Sint 2015]
- electric $E_{FL}^{imp} = \tilde{E}_{EL} \frac{1}{6}a^2\partial_0^2\tilde{E}_{EL}$ where $\tilde{E}_{EL} = \frac{4}{3}E_{FL}^{pl-sym} + \frac{1}{3}E_{FL}^{cl}$

4. What about c_b ?

PERTURBATIVE MODEL: COUPLING AT ORDER g_0^2

- ▶ Non-perturbative definition of the coupling $\bar{g}_{GF}^2 = \mathcal{N}^{-1} t^2 \langle E(x_0, t) \rangle$
- Perturbative expansion of $\langle E(x_0, t) \rangle$

 $\langle E(x_0,t)\rangle = E_0 g_0^2 + O(g_0^4)$

$$E_0 = \frac{g_0^2}{2} \langle \partial_\mu B^a_{\nu,1} \partial_\mu B^a_{\nu,1} - \partial_\mu B^a_{\nu,1} \partial_\nu B^a_{\mu,1} \rangle$$

• numerical computation of the normalisation factor $\mathcal{N} = t^2 E_0$ at L.O., which means computing the coupling at L.O.

$$t^{2}\langle E_{mag}(t,x)\rangle|_{\sqrt{8t}=cL,x_{0}=\frac{T}{2}}=\mathcal{N}_{LAT}(c,\frac{a}{L})\bar{g}_{GF}^{2}(L)$$

[P. Fritzsch A. Ramos 2013]

- study of not only Wilson flow but also improved Zeuthen flow, use of advantageous setup -expectation:
 - $c_h^* = 0$ improved (LW) action improved (Z) flow improved (OBS) mag,el
 - behavoiur within the improvement: $\mathcal{N}_{LAT} = \mathcal{N}_{CONT} + O(a^4)$

PERTURBATIVE MODEL: COLOUR MAGNETIC COMPONENT

 $\mathcal{N}_{LAT}(c, \frac{a}{L}) = t^2 \langle E_{mag}(t, x) \rangle |_{c=0.3, x_0 = \frac{T}{2}}$ LW (action) Z(flow) IMP(obs) $O(a^2)$ improved improved (action)- improved (flow)- improved (observable) \Rightarrow

 $\Rightarrow c_b^* = 0$ realises full $O(a^2)$ improvement

PERTURBATIVE MODEL: WILSON ACTION NOT IMPROVED

- ► Wilson action, NOT improved ⇒ counterterm basis incomplete!
- Consider the Zeuthen improved flow and a set of 12 improved observables:

• Let's fix $c_{b(mag@0.3)}^*$ that minimise cutoff effects in one observable E_{mag} at c = 0.3. Does this $c_{b(mag@0.3)}^*$ reduce the $O(a^2)$ effects in the other flow observables?

PERTURBATIVE MODEL: $c_{b(mag@0.3)}^*$ EFFECT ON ALL OTHER OBSERVABLES

W(act)-Z(flow)-IMP(obs) $c_{b(mag@0.3)}^*$ by definition cancel cutoff effects in $E_{mag@0.3}$, green line. It reduces the $O(a^2)$ effects in all other observables: comparing $c_b = 0$ (red) with $c_{b(mag@0.3)}^*$ (blue) we see both the spread and the slope are reduced.

Does this work beyond perturbation theory?

INTRODUCTION	GRADIENT FLOW	Improvement	RESULTS	SUMMARY AND ONGOING STUDIES
Neurope				

• Analysis set of data [data set obtained from A. Ramos and M. Dalla Brida] The GF coupling is sensitive to different topological charge sectors $Q(t) = \frac{1}{16\pi^2} \sum_x G_{\mu\nu}(x,t) \tilde{G}_{\mu\nu}(x,t)$

 \Rightarrow Modified definition of the GF coupling

$$\bar{g}_{GF,0}^2 = \mathcal{N}^{-1} t^2 \frac{\langle E(t)\delta_{Q,0}\rangle}{\langle \delta_{Q,0}\rangle} \bigg|_{t=\frac{c^2L^2}{8}}$$

[P. Fritzsch A. Ramos and F. Stollenwerk 2013]

- Extrapolations to the continuum of the observables at different values of $c = \frac{8t}{L} = 0.2, 0.3, 0.4$
 - ► $E_{MAG}(t, x)$, $E_{EL}(t, x)$, adding more observables $\partial_0^2 T^2 E_{MAG}(t, x)$, $\partial_0^2 T^2 E_{EL}(t, x)$
- Tuning c_b coefficient in the simulations...

SUMMARY AND ONGOING STUDIES

- Gradient flow observables have many useful applications because they are finite at t > 0, after the usual renormalisation of bare parameters.
 (One of the application is the study of the strong coupling)
- The drawback is that they have large cutoff effects. We study how to remove/minimise using Symanzik improvement program. In particular we test numerically the 4th source of them tuning the c_b parameter
- Perturbative study: we confirm numerically
 - ► the expected behaviour within the **improvement** for both magnetic $E_{MAG}(t, x)$ and electric $E_{EL}(t, x)$ components: $\mathcal{N}_{LAT} = \mathcal{N}_{CONT} + O(a^4)$
 - the theoretical expectation for the c_b value at L.O. with improved quantities
 - we study what the effect of c^{*}_{b(mag@0.3)} on other observables when using Wilson action and we see reduced cutoff effects!
- Non-perturbative study [currently running...]
 - Analysis of both magnetic and electric components for $c_b = 0$ and extrapolation to the **continuum limit**
 - We are simulating other values c_b to see if the hypothesis of using c^{*}_{b(fixed obs)} in other observable to realise the improvement works beyond perturbation theory.

Thank You!