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Introduction

Lattice QCD is formulated in Euclidean time, with states living on an
L x L x L torus.

» Generically, calculating the rate at which hadrons are produced in a
reaction is not directly possible from Euclidean correlators (an analytic
continuation is involved).

» When only one or two channels are open, the rate can be related to
stationary observables (energy levels and matrix elements of states on a
torus; Liischer & Lischer-Lellouch relations for (wm|Hw |K) or (wm|J|0))

» When several channels are open, the stationary states on the torus are
linear superpositions of all possible channels. Extracting an exclusive
transition rate requires undoing the quantum entanglement, which
becomes untractable as the energy increases.

» Can we at least say something about the total transition rate?
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The vector vacuum correlator [Fig. from Bernecker, HM 1107.4388]

R(s)

G(t) = / da (< (1, )" (0)) = /OOO dww?p(w’)e™ M, p(s) = 55

Allows for consistency check between lattice and experimental data. What
about finite-volume effects?
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FV effects: illustration in Free Field Theory

» correlation function Cr(t,k) = [ dx e (¢*(t, z) $*(0)) (set m = 0):
—|k|t
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lllustration in Free Field Theory
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How does the spectral function behave when L — co?
Fi(wo, T)

rL=2 —
rL=3 —
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» convolution of the spectral function with a Gaussian ‘resolution function’

5 e e—(w—w0)2/2f‘2

F(wo, T E47r/ dwp(w, bk =0)———F———
(w0, 1) =47 [ dwplenk = 0) o

> in infinite volume, amounts to unity (for I' < wo)

> in finite volume, the corresponding integral amounts to

2 sin LolmIL m?2LT?
FL(wo,P) >~ Z 726Xp <_7

3 ), F<<w0,F2L<<w0.
mez3

woL|m]|

HM 1104.3708; see also Hansen & Robaina at LAT17 https://doi.org/10.1051/epjconf/201817513021.
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Fermi’s Golden Rule description of particle decay

> Let |¥) be a zero-momentum, one-particle state on a 3d torus of volume
L3, described by a Hamiltonian Hy;

> Let now H = Hy + V with a small perturbation V' that allows is to decay
in the L — oo limit:
[ =27 lim lim Zm )P 61/ (Ex(L) — M), Vi(L) = (k, L|V|W).

t—o00 L—oo

sin?
> the states are unit-norm states and d1/,(w) = %%

delta-function.

is a regularized

> the k' term is equal to the probability that in a measurement done at
time t the system is observed in the unperturbed state k, divided by t.

> rewrite the width as

1 . —~
F:milglOLh—I};o/ dw 47erZO\Vk ‘ 0(w— Ex(L ))] Ia(M,w)

=p(w,L)

> gA(M,w) is any regularized delta-fcnt going rapidly to zero for w — oc.
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QFT-textbook expression of particle width

> In the infinite-volume limit, expect

fim [ dw oa(M,w) p(w, L) = / " oa(M,w) pw), (%)

L—oco 0 0

plw) = Z Sia /dq)a(kl, o kN (P = (w, 0), o 0ut |[V(0)| W) 2

=|M(T—a)|?

where d®,, is the Lorentz-invariant phase-space measure for an
Na-particle state of energy w, and V = [ dz V(x).

> Now take the limit A — 0 of expression (x).

> Hence the textbook QFT expression for the particle width,

1
D= —p(w= M).
o P )

d3k; d®kn,,
(27)3 2wi, (27r)32wkNa

(klk'Yy = (2m)% 6 (k — k') 2B

NB. d®q(k1,--- ,kng) = (2m)* 6t (P — N k).
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Extracting [ dw SA(M,w) p(w, L) from Euclidean correlators (1)

Let WT(7) be an interpolating operator for the W particle at rest:

_ 3e=M7 L lim (U(rs) [Pz V(r,2)V(0) T (7;))
G(r,L) = 2ML T}%WI_»_OO ) ()

= 2ML3<\I"/d3:cv(r,w)V(O)‘\I/>L.

— T Ood —wT
= 2ML°Y e T (B V(0)| W) = i %p(w,L}e .
k

~~ In lattice QCD, we can compute the Laplace transform of the finite-volume
spectral function p(w, L).

Possible applications: T'(D — X,), I'(B = X.); I'(EL), T(EL).

Inclusive purely hadronic decay rates, where ‘inclusive’ means all final states
with a given set of good quantum numbers in QCD.
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Extracting [ dw 5A(M,w) p(w, L) from Euclidean correlators (Il)

> There are many methods to regularize and solve the ill-posed problem of
numerically inverting the Laplace transform (Maximum entropy/other
Bayesian methods), but it is usually hard to estimate a systematic error.

» By linearity: (for determining I", choose @ = M)

* dw s
G(ry) = / & o, L) e
0

2
_ d dw _ —wWT,
Z#%MXXQ%:A 5, P, L) 32;C(@)e
——
=5A (@,w)

» The Backus-Gilbert method provides a recipe to determine coefficients C;
such that the energy resolution

A:/(m@—m%MM@{
0

is optimized under the normalization constraint f0°° dw o (w, @) = 1.

> Perform the calculation for several (1/L,A) and extrapolate to (0,0).

G. Backus and F. Gilbert, Geophys. J.R. Astron. Soc. 16, 169 (1968); Phil. Trans. R. Soc. A 266,
123 (1970); Brandt et al. 1506.05732 (PRD).
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Toy-model study of the (1/L,A) — (0,0) limit
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» Case of a constant K — 77 transition amplitude: spectral function only

contains the two-body phase space.

> Intriguing: there are trajectories that lead quite rapidly to an accurate

estimate of the infinite-volume spectral function.

Fig. by M. Hansen; see also HM, 1104.3708 (EPJA).




Generalization: transition with transfer of momentum to the final
hadronic state

(think: semileptonic decay)

> transition spectral function in infinite volume:
1 1
pr(Ep) = -3 o [ Bl by )|(E b asout 7O, PV
nx o Sa

» Again, the Laplace transform of the finite-volume spectral function can be
determined:

Gp(t,p,L) = 2B¢L?¢ ®¥" lim  lim

Tf—00 Tj—>—00
(U(ry, P) [d*w PP (7, 2)7T(0) W' (r:, P))
(W(7y, P) Ui(7, P))

= 2B4L°) e "7 |1 (Br,p|T(0)|¥, P)P?
k

 dw _
_ aw L wr
A o pP(UJ,p7 ) e
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Application: inelastic scattering on the nucleon

do o< 0" Wy

leptonic

N
Pz =pP+¢q

The spin—averaged hadronic tensor:

Doy /d%uﬂ,.. ko ) (N P AL (0) [P, @) Py @ L ()| N, p A)

W (p,q) = 47””

where j, =37, waf’y,ﬂbf is the electromagn. current. The task is to invert

G =L [T ap0 erir L
;J,l/,p(Ta Pz ) = o o Py € °F P;w,p(p:ra ) s
—_————

“=74n Wy (p,q)

Guvp(T,py, L) E2EPL36_EPT/d3xe_iq‘X lim  lim

T§—00 Tj——00
A (0755 P (7, X)) (73, P)) conn
S (W (ry,p) L (74, p))
The dispersion variable is the final-state energy. Here ¢ is spacelike.
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Application for ¢ timelike: semileptonic decays

Pe

dl < " W,,
leptonic p
124

q="pe+pv —_— /

Dy

Here J, = @v.(1 — v5)Q. The task is to invert

Hg—X T Ho—X

1 [ W
Gup (1P, L) = o / dwe Puv,p (W: P> L) )
0 D Y ——

“="2MWy (p/M,q)
Hg—X

Gus " (1,pg, L) = 2B, L% ™7 / dPxe* lim  lim

Tf—>00 T;—>—00
<\IIQ(Tf7 P)j; (Ta x)jV(O)\I’TQ(Tiv p))COnn
(Wq(r5,p) L (7i,p))

See also S. Hashimoto, Prog. Theor. Exp. Phys. 2017, 053B03 (2017);
U. Aglietti et al., Phys. Lett. B 432, 411 (1998) (this paper involves the shape function).

)
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The inclusive semileptonic decay rate

W (0, q) = W1 g + W20y — W3Easv” ¢ + Waquqy + ws(guve + Vugy)

with w; = w; (v - ¢, q ) Then differential rate given by

A — Vol
dE.dq?dq° @ 32 2

L 207w+ BE. (8" — Bo) — ¢ lwa + 247 (2B — ¢)ws) |

See e.g. B. Blok, L. Koyrakh, M. Shifman, and A.l. Vainshtein, PRD 50, 3572 (1994).
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Related work: Compton amplitude & hadronic tensor (¢ < 0)

My subjective reading of the following papers:

> [W. Wilcox, NPB (Proc. Suppl.) 30 491 (1993); K.-F. Liu and S.-J. Dong, PRL72 1790
(1994)] the hadronic tensor W,,,, can be obtained by performing an inverse
Laplace transform of a lattice four-point correlation function

> [X.-d. Ji and C.-w. Jung, PRL86 208 (2001)] the forward Compton amplitude

Tyw (P, @) n = i/d4x " (p, N|T{ju ()3 (0) }p, \)

can be obtained from the lattice below threshold for particle production
((p+qP? < M%,ie w= %’3 <1).

» QCDSF collaboration, PRL 118, 242001 (2017); [Gross & Treiman 1971]

P )—/1d7$F(x 2)
K , uw\P,q) = o 1—(1.22{E2 2\T,q ),

projector

Fy(z,¢*) = unpolarized structure function, = = 1/w; and similar for
Fi(z,q?). Various methods to solve the integral equations for Fi and Fs.
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Forward +*v* — ~*~4* amplitude vs. o(7*y* — hadrons)

wazusm (Pa; Pr, ) = /X X, ex_jza FPaXa <J#1 (X1)Jpo (X2) I3 (0)Jpy (X4)>E
1 )

4
e
MTT(*lev *szy —Q1- Q2) = z Rflug R52#4 H51/-L3u4#2 (7Q2; —Q1, Ql)’
————
projector

Dispersive sum rule: (v = 1(s+ Q7 + Q3))

_w

M (et i) -Mer(a 8.0 = 2= [ av
vo

V2 —dias

m(00+02)(V )s

Q} = 0.352 GeV? Q} = 0.352 GeV?

P\«‘"rlmrv(llru —_
W %
Tensor
Scalar QED
Total —
HU)U
&
=
50
ok — mx = 193MeV, 643 x 128, a = 0.063fm
0 0.02 0.04 0.06 0.08 0.1 0.12
- 7 Gey) ) )
R, = 5uu*m' [(Ql'Qz)(QluQ2u+Q1uQ2u)*Q1 Q2,Q2,—Q; Qqu]-

Green, Gryniuk, von Hippel, HM, Pascalutsa, PRL115 222003 (2015); Gérardin et al, 1712.00421
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Going above the threshold for hadron production?

With Hyw the AS = 1 effective Hamiltonian:

(K°|Hw|a) {a|Hw |K°)
Mg — Eq

AMg =2 \P/ Z

princ. value ¢

Accessed on the lattice from the four-point function

1 rts tp .
Gty tastst) = [ e [ ara (RO (o) H ()R (1)
ta ta

2

Analogue of computing the Compton amplitude T},. (p, ¢) on the lattice above
particle production threshold, w > 1.

Here it appears feasible to subtract the contributions of intermediate states
with mass below Mgk.

N. Christ et al., PRD 88, 014508 (2013); Z. Bai et al, PRL 113, 112003 (2014)
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Conclusion

» Four-point functions computable on the lattice are sensitive to transition
rates encoded in the hadronic tensor.

> Allows for confronting experimental information on the hadronic tensor
data with lattice data = consistency check.

» How far can we get in actually inverting the integral transform
numerically?
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