Scattering of hadrons in lattice QCD: some applications

Sasa Prelovsek

University of Ljubljana

Jozef Stefan Institute, Ljubljana, Slovenia

University of Regensburg

Trinity College, Dublin, Ireland 14-18 May 2018

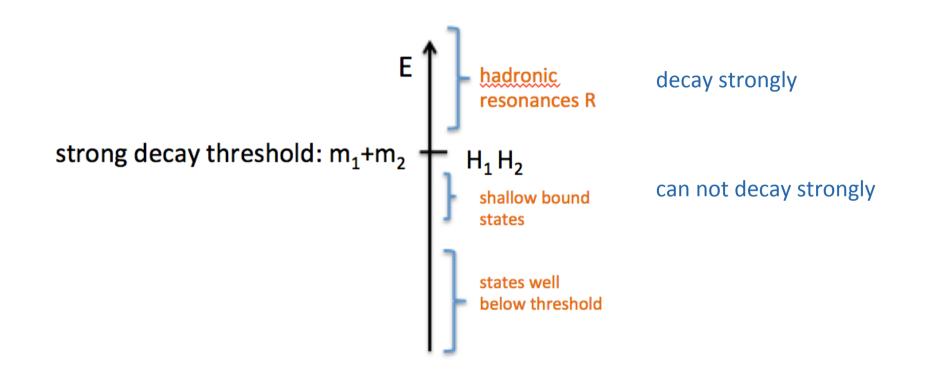
Outline

bound states in mesonic systems:

- D_{s0}*(3217) : possibly cleanest example in meson systems
 [Mohler, Lang, Leskovec, S.P., Woloshyn, PRL 2013, PRD 2014; RQCD PRD 2017; HSC, C. Thomas @ Lattice 2016]
- charmonium-like X(3872) : very interesting, but why theoretically less clean than Ds0
- charmonium resonances (breifly)
- Scattering of two particles with spin on the lattice
- motivation
- the relation to extract the scattering matrix from energies is known
- construction of operators (interpolators)
 by three different methods that give consistent results: reassuring
- example: Nucleon-pion scattering in p-wave, J^P=1/2⁺

lattice results and implications for the Roper resonance

Clasification of hadron states



Shallow bound states of two mesons

states well below \overline{u} $\overline{S}u$ CUthreshold \overline{CS} n[±] K± D[±] $D^{\pm}_{s} D^{*\pm}$ rl⁰ K⁰ D^0 n $K_{\rm S}^0$ D'(2007)⁰ $D_{s0}^{*}(2317)^{\pm}$ strongly decay: f0(500) or o was f0(60 D'(2010) ± resonances KL⁰ $D_{s1}^{s0}(2460)^{\pm}$ ρ(770) $\begin{array}{c} {}_{s1}(2530)^{+}\\ D_{s1}(2573)\\ D_{s2}^{*}(2573)\\ D_{s1}^{*}(2700)^{\pm}\\ D_{s1}^{*}(2860)^{\pm}\\ D_{s3}^{*}(2860)^{\pm} \end{array}$ D0*(2400)0 ω(782) K₀ (800) or I n'(958) $D_0^{(2400)^{\pm}}$ K (892) candidates for f₀(980) K₁(1270) $D_1(2420)^0$ a₀(980) shallow bound st. $K_1(1400)$ φ(1020) $D_1(2420)^{\pm}$ h1(1170) K (1410) $D_{sJ}(3040)^{\pm}$ D1(2430)0 b1(1235) K₀*(1430) D2*(2460)0 a1(1260) PDG K2*(1430) 600 f₂(1270) [MeV] D2*(2460) * K(1460) $f_1(1285)$ 500 D(2550)0 K₂(1580) n(1295) D* K 400 D(2600) n(1300) K(1630) - $(m_{Ds}^{+}+3m_{Ds}^{*})/4$ a2(1320) D (2640) ± 300 K₁(1650) = = DK f₀(1370) D(2750) K (1680) 200 h1(1380) $K_2(1770)$ 100 $\pi_1(1400)$ K3 (1780) n(1405) 0 K₂(1820) $f_1(1420)$ -100 K(1830) ω(1420) Ш -200 $f_2(1430)$ $D_{s} D_{s}^{*} D_{s0}^{*} D_{s1} D_{s1} D_{s2}^{*}$ a₀(1450) 0^+ 1^+ 1^+ $J^{P}: 0^{\overline{}} 1^{\overline{}}$ 2^+_{\Box} Sasa Prelovsek Scattering in LQCD ρ(1450)

Mesonic bound states in s-wave? (analogues of deuterium)

How to search for shallow s-wave bound state on the lattice?

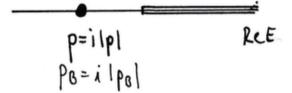
Example: $D_{s0}^{*}(2317)$ bound state in DK scattering, s-wave

To be shown on next slides:

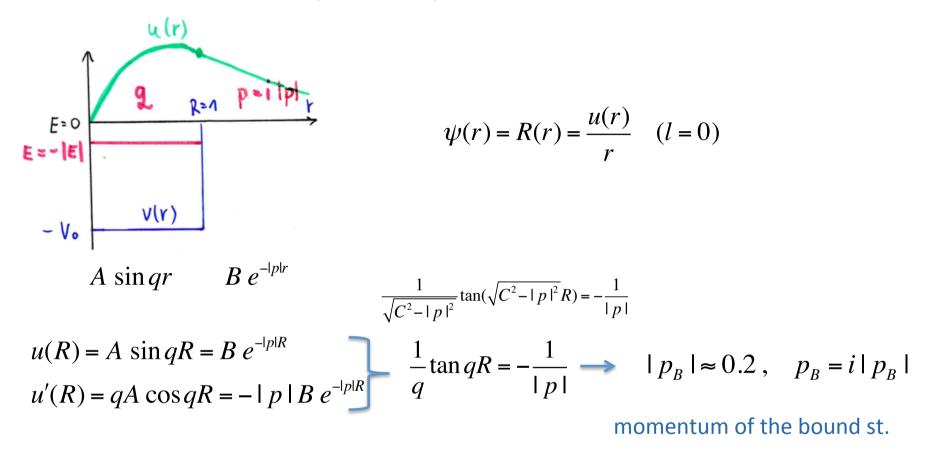
• extract scattering matrix, phase shift δ

• signature: negative and large a₀

$$p \cot \delta = \frac{1}{a_0} + \frac{1}{2}r_0 p^2 + O(p^4)$$



non-relativistic QM: spherical potential well with one bound state



$$q = \sqrt{2\mu(V_0 - |E|)} = \sqrt{2\mu V_0 - |p|^2}$$

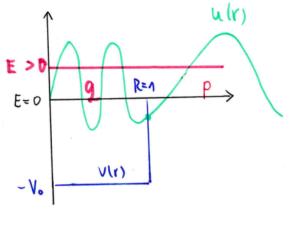
$$C^2 = 1.7^2 \text{ (to ensure one shallow bound st.)}$$

Sasa Prelovsek

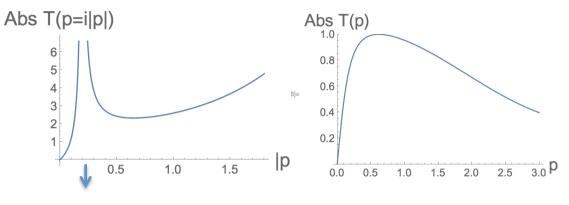
Scattering in LQCD

s-wave scattering on spherical potential well

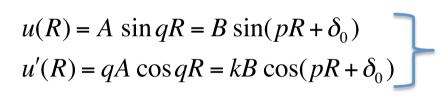
Scattering in LQCD



 $B\sin(pr+\delta_0)$ $A \sin qr$



 $|p| = |p_B| = 0.2$: pole of T at the position of the bound st.



$$q = \sqrt{2\mu(V_0 + E)} = \sqrt{2\mu V_0 + p^2}$$

C²=1.7² (as before)

$$\frac{1}{q} \tan qR = \frac{1}{k} \tan(pR + \delta_0)$$

$$\delta_0(p) = \arctan\left(\frac{p}{q} \tan(pR)\right) - pR + n\pi$$

$$S = e^{2i\delta(p)} = 1 + 2iT(p) \qquad T(p) = \frac{1}{\cot\delta(p) - i}$$

pole threshold

$$p=i|p|$$

Referring in LOCD
$$p=i|p|$$

Sasa Prelovsek

s-wave scattering on spherical potential well

$$\delta_{0}(p) = \arctan\left(\frac{p}{q} \tan(pR)\right) - pR + n\pi$$

$$q = \sqrt{2\mu V_{0} + p^{2}} = \sqrt{C^{2} + p^{2}}$$
Taylor expanding
$$p \cot \delta_{0}(p) = \frac{c}{-c + Tan(C)} + \frac{1}{6} \left(3 - \frac{c^{2}}{(c - Tan(C))^{2}} - \frac{3}{c^{2} - c Tan(C)}\right) p^{2} + 0[p]^{4} = \frac{1}{a_{0}} + \frac{1}{2}r_{0}p^{2}$$

$$1/a_{0}$$
for general potential and general partial wave I
$$\lim_{p \to 0} \tan \delta_{l}(p) \propto p^{2/t_{1}}, \quad p^{2/t_{1}} \cot \delta_{l}(p) = C + O(p^{2})$$
Landau: QM, p -> k
$$\psi(r) = R_{l}(r)Y_{lm}$$

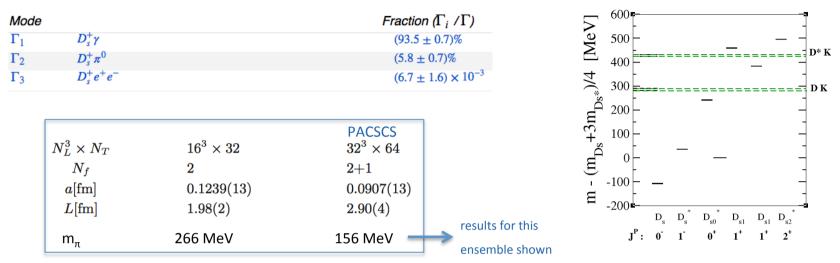
$$R_{l} = c_{1}(-1)^{t} \frac{(2l+1)!!}{k^{2l+1}} r^{l} \left(\frac{d}{rdr}\right)^{t} \frac{\sin kr}{r} + c_{2}(-1)^{t} \frac{-r}{(2l-1)!!} \left(\frac{d}{rdr}\right)^{t} \frac{\cos kr}{r}.$$

$$kr > 1: R_{l} \approx \frac{c_{1}(2l+1)!!}{rk^{t+1}} r^{l} \left(\frac{d}{rdt}\right)^{t} \frac{\sin kr}{r} + c_{2}(-1)^{t} \frac{-r}{(2l-1)!!} \cos \left(kr - \frac{\pi l}{2}\right).$$

$$R_{l} \approx \operatorname{const} \cdot \frac{1}{r} \sin \left(kr - \frac{\pi l}{2} + \delta_{l}\right)$$

$$tg \delta_{l} \approx \delta_{l} - \frac{c_{2}}{c_{1}(2l-1)!!} (2l+1)!!} k^{2l+1}$$
Sasa Prelovsek

D_{s0}^{*} shallow bound state in DK scattering: I=0, J^P=0⁺



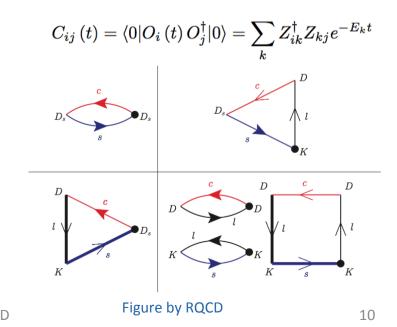
Interpolators in A₁⁺ of Oh: P_{tot} =0 is simulated by our and Regensburg group

 $O^{qq} = \overline{s}c$

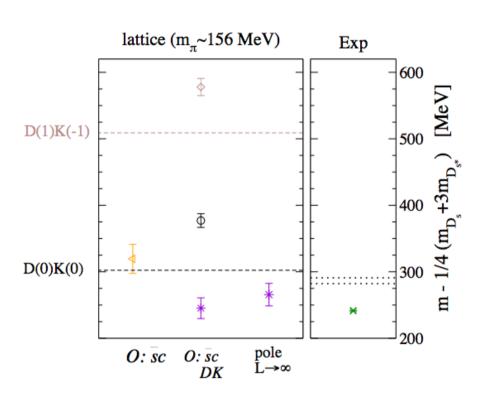
$$\overline{s}\gamma_i \nabla_i c$$
$$\overline{s}\gamma_i \gamma_i \nabla_i c$$
$$\overline{s}\nabla_i \nabla_i c$$

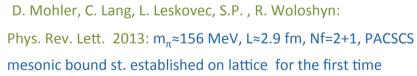
$$\begin{split} O_1^{DK} &= [\bar{s}\gamma_5 u] \, (\vec{p}=0) \, [\bar{u}\gamma_5 c] \, (\vec{p}=0) + \{u \to d\} \ , \\ O_2^{DK} &= [\bar{s}\gamma_t\gamma_5 u] \, (\vec{p}=0) \, [\bar{u}\gamma_t\gamma_5 c] \, (\vec{p}=0) + \{u \to d\} \\ O_3^{DK} &= \sum_{\vec{p}=\pm e_{x,y,z}} [\bar{s}\gamma_5 u] \, (\vec{p}) \, [\bar{u}\gamma_5 c] \, (-\vec{p}) + \{u \to d\} \ . \end{split}$$

C evaluated using distillation method [Peardon et al.] Sasa Prelovsek Scattering in LQCD

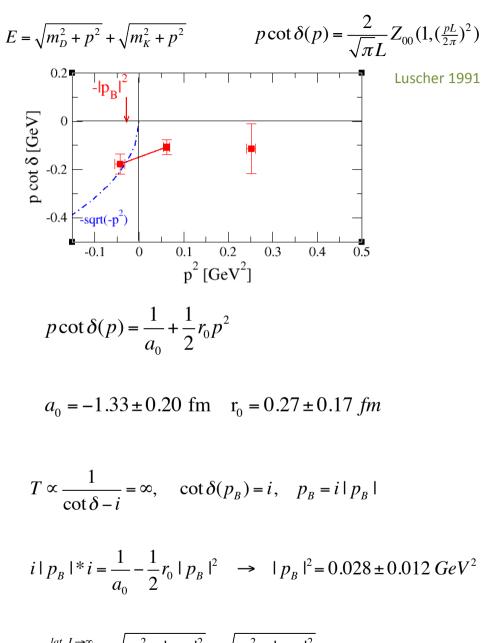


D_{s0}*(2317)





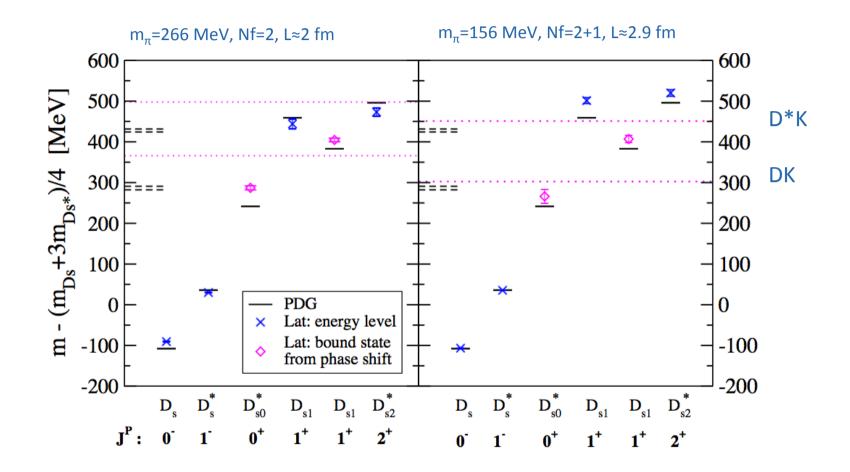
D _{s0} *(2317)	m - ¼ (m _{Ds} +3m _{Ds*})	mD+mK-m
lat	266 ± 16±4 MeV	36 ± 17 MeV
exp	241.45 ± 0.6 MeV	45 MeV



$$m_{D_{s0}}^{lat, L \to \infty} = \sqrt{m_D^2 - |p_B|^2} + \sqrt{m_K^2 - |p_B|^2}$$

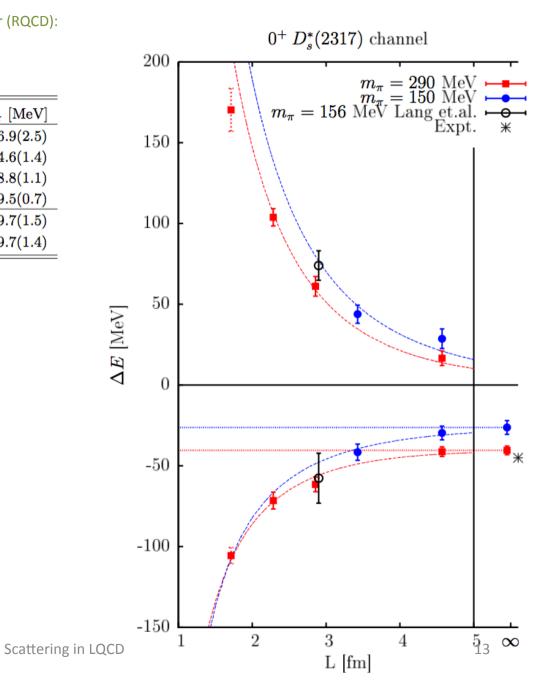
cattering in LQCD

Spectrum of Ds mesons



Lang, Leskovec, Mohler, S.P., Woloshyn: PRD 2014

Scattering in LQCD



Bali, Collins, Cox, Schafer (RQCD):

PRD (2017) 074501

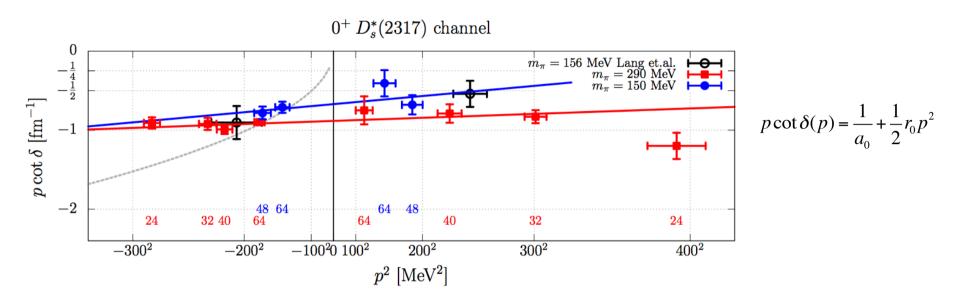
κ_l	$a~[{ m fm}]$	V	am_{π}	$m_{\pi}~[{ m MeV}]$
0.13632	0.071	$24^3 \times 48$	0.1112(9)	306.9(2.5)
	0.071	$32^3 \times 64$	0.10675(52)	294.6(1.4)
	0.071	$40^3 imes 64$	0.10465(38)	288.8(1.1)
	0.071	$64^3 imes 64$	0.10487(24)	289.5(0.7)
0.13640	0.071	$48^3 \times 64$	0.05786(55)	159.7(1.5)
	0.071	$64^3 imes 64$	0.05425(49)	149.7(1.4)

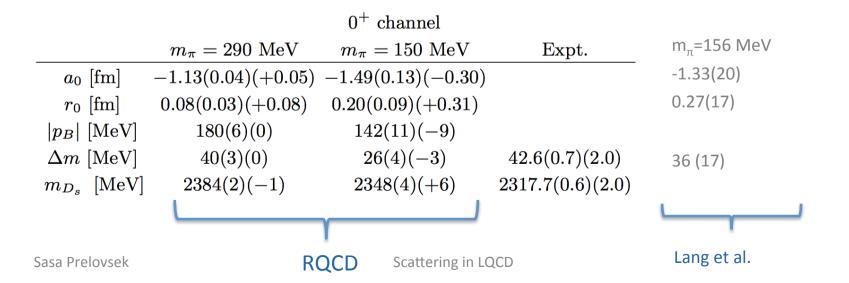
 $O: \ \overline{sc}, D(0)K(0), D(1)K(-1)$

D_{s0}*(2317)

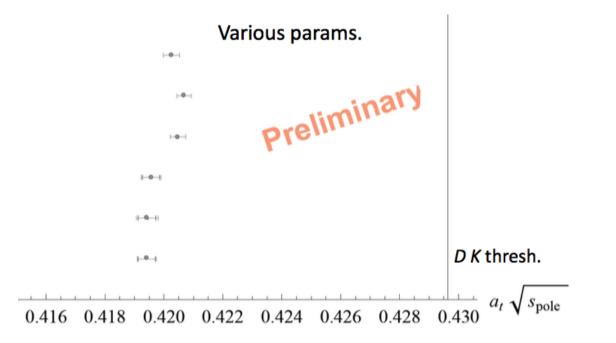
Sasa Prelovsek

Bali, Collins, Cox, Schafer (RQCD): PRD (2017) 074501





location of extracted bound-state pole for various parametrizations



Bound state, below *DK* threshold: $a_t \Delta m \approx 0.010 \rightarrow \Delta m \approx 55 \text{ MeV}$

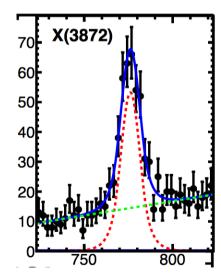
X(3872), J^{PC}=1⁺⁺, charmonium-like

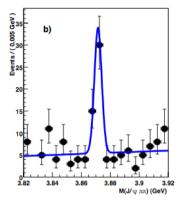
- First charmonium-like state discovered [Belle, PRL, 2003]
- sits within 1 MeV of D⁰D^{0*} threshold
 8 MeV below D⁺D^{*-} threshold
- believed to have a large molecular D⁰<u>D</u>^{0*} Fock component
- Γ < 1.2 MeV
- decays to I=0, 1 equally important

 $X(3872) \rightarrow J/\Psi \omega (I=0)$

 $X(3872) \rightarrow J/\Psi \rho$ (I=1)

[LHCb, PRL 2013]



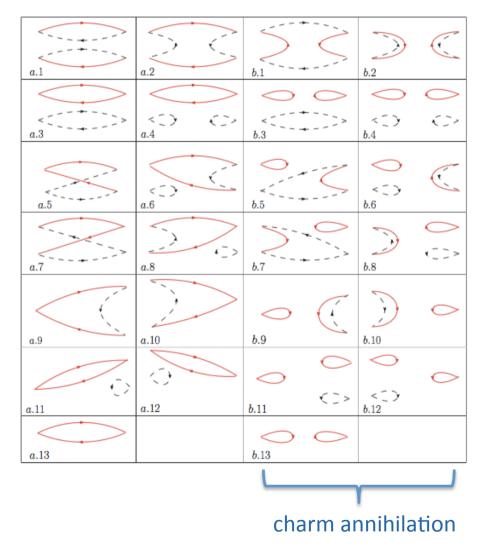


isospin breaking effects my be

important

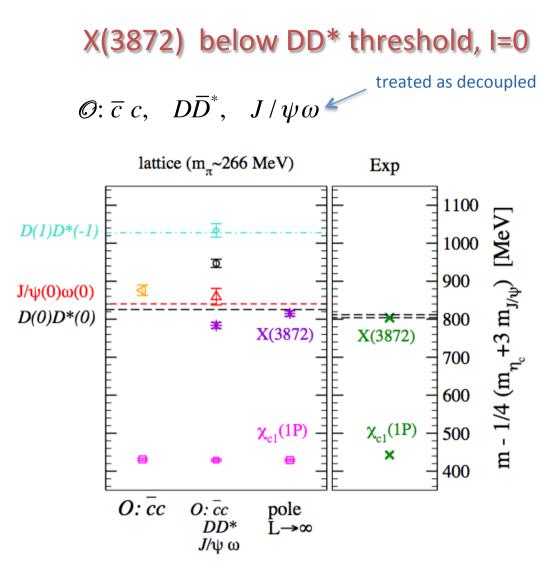
X(3872), 1++, I=0

 $\mathcal{O}: \ \overline{c} \ c, \quad D\overline{D}^* = (\overline{c}u)(\overline{u}c) + (\overline{c}d)(\overline{d}c), \quad J/\psi\omega = (\overline{c}c)(\overline{u}u + \overline{d}d)$



- all Wick contractions
 calculated using
 distillation method
 [Peardon et al. 2009]
- charm annihilation
 contractions not used in analysis

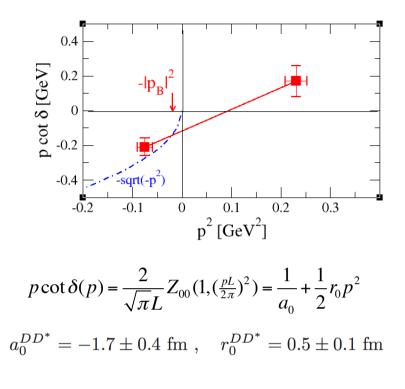
[S.P. and L. Leskovec, Phys.Rev.Lett. 2013]



m_π≈266 MeV, Nf=2

[Padmanath, Lang, S.P., PRD 2015]

Sasa Prelovsek



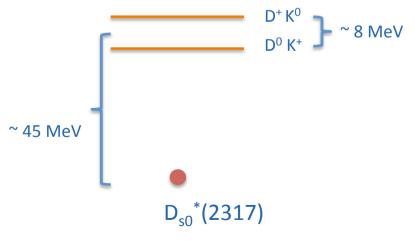
$$T \propto [\cot \delta - i]^{-1} = \infty, \quad \cot \delta(p_B) = i$$
$$m_X^{lat, L \to \infty} = \sqrt{m_D^2 - |p_B|^2} + \sqrt{m_{D^*}^2 - |p_B|^2}$$

X(3872)	m - (m _{D0} +m _{D0*})	
lat	- 11 ±7 MeV	
exp	- 0.14 ± 0.22 MeV	

X(3872) appears only if both <u>cc</u> and D<u>D</u>* interp. used. $_{18}$

D_{s0}*(2317) in DK

- very narrow: width not measured
- theoretically cleaner
- no Wick contraction omitted
- no other nearby threshold
- isospin breaking less relevant
- only s-wave contributes to J^P=0⁺

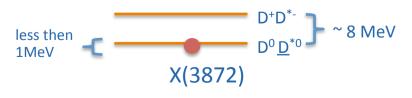


X(3872) in D<u>D</u>*

• same

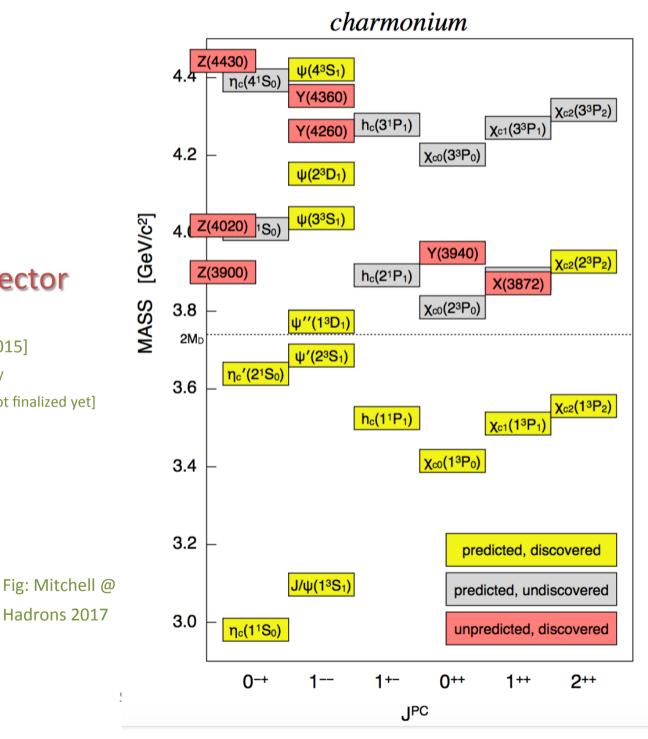
VS.

- currently theoretically less clean -> more to be done
- charm annihilation omitted
- I=0 state in isospin limit: J/Ψ ω (I=0) threshold at 3879 MeV , J/Ψ πππ J/Ψ ππ (I=0) threshold formally below X(3872)
- isospin breaking more relevant (not considered on lat)
 - another threshold for broken ~I J/ $\Psi \, \rho$ (I=1) threshold 3873 MeV , J/ $\Psi \, \pi \pi$
- s and d-wave in $J^P=1^+$ (d-wave not considered on lat)
- nevertheless: the lattice result obtained is believed to be rather solid (X has width much less than MeV)
- more work to be done



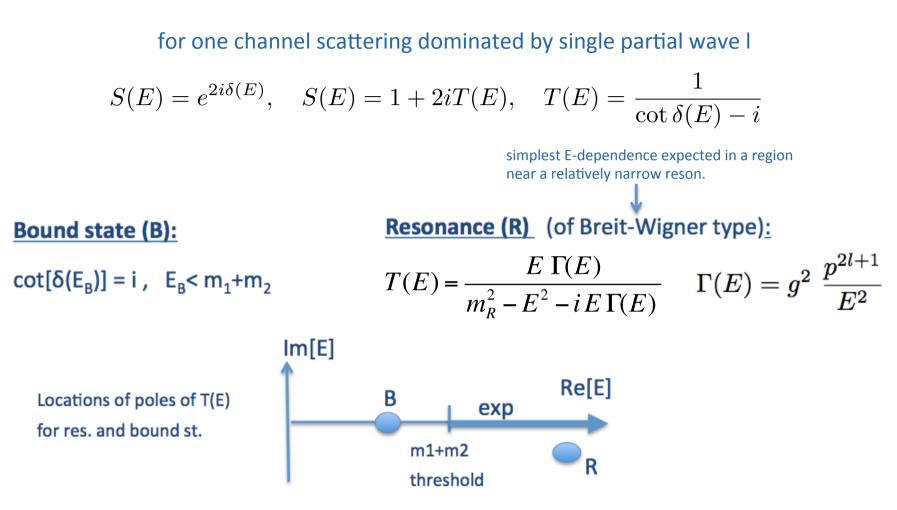
Resonances .. in charmonium sector

[Lang, Leskovec, Mohler, S.P., JHEP 2015] [the physics conclusions from on-going study on CLS ensembles with Regensburg group not finalized yet]

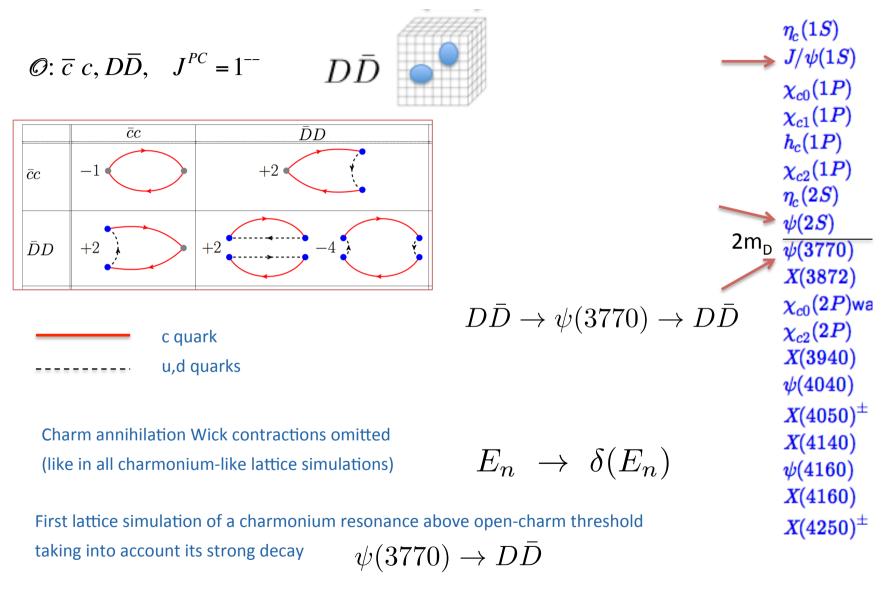


Sasa Prelovsek

Resonances vs. bound states



Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave

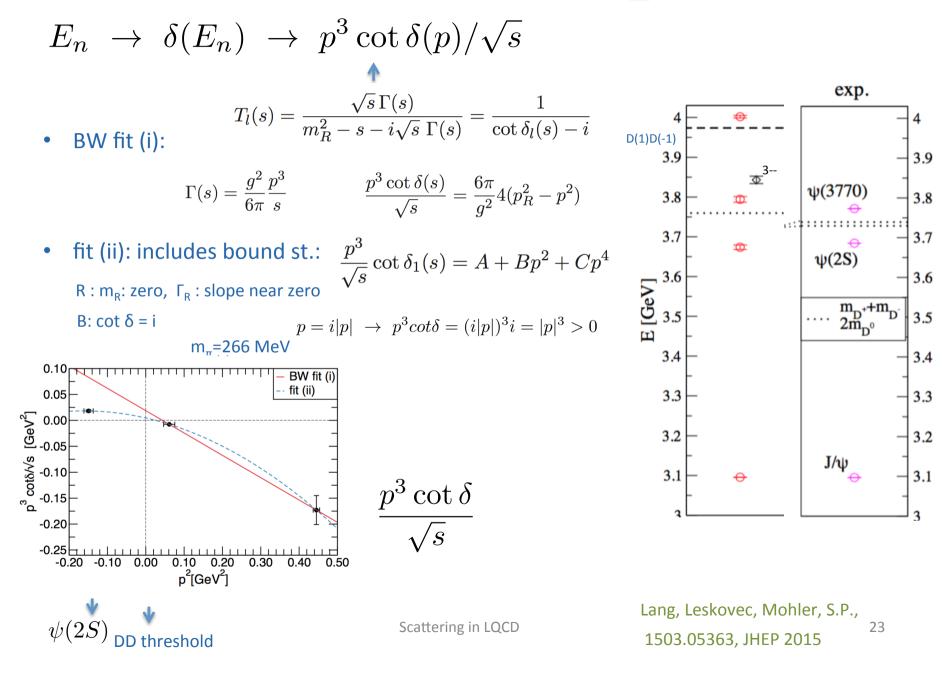


Lang, Leskovec, Mohler, S.P.,

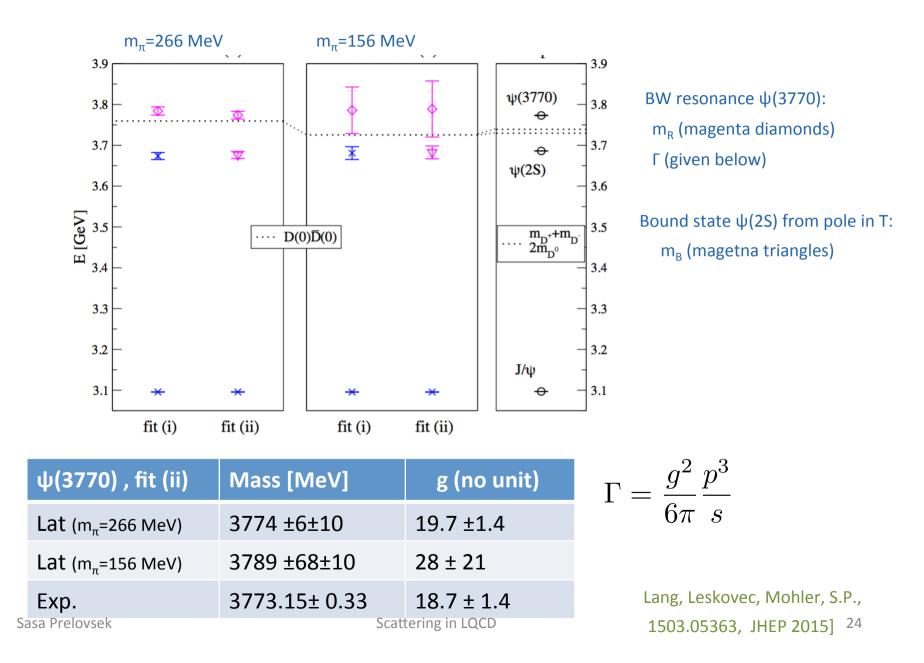
Scattering in LQCD

1503.05363, JHEP 2015 ²²

Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave



Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave



Scalar charmonia from D<u>D</u> scattering in s-wave, J^{PC}=0⁺⁺: puzzles remain to be solved

DD scattering phase shift

$$E_n \to \delta(E_n) \to p \cot \delta / \sqrt{s}$$

real also below threshold

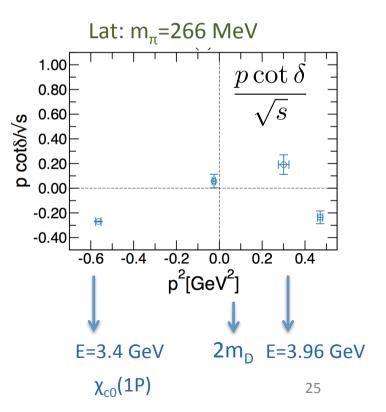
Near simple BW resonance:

$$\frac{p \cot \delta(s)}{\sqrt{s}} = \frac{4}{g^2} (p_R^2 - p^2) , \quad \Gamma(s) = g^2 \frac{p}{s}$$

At the bound state pole:

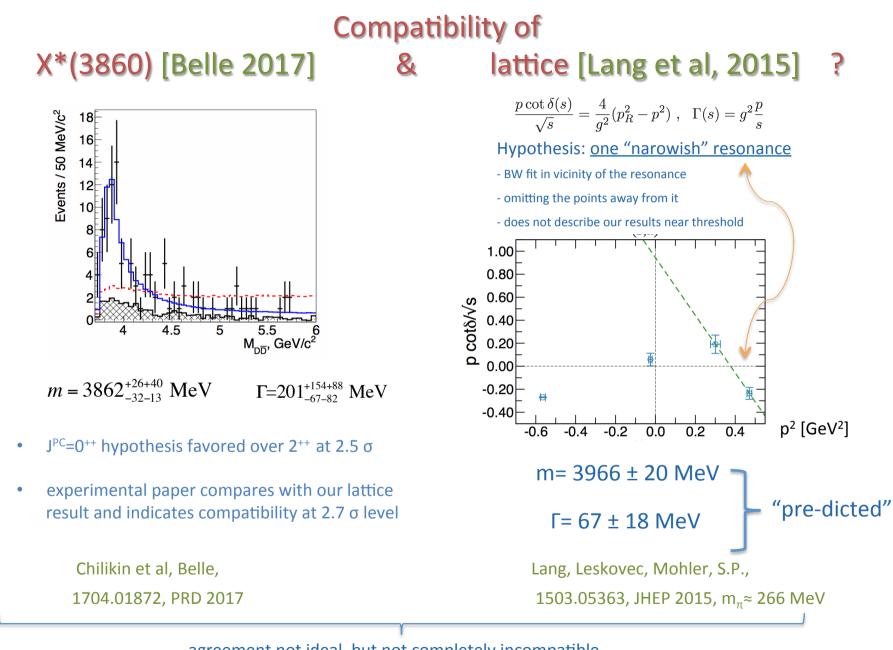
$$p = i|p| \to p \cot \delta = (i|p|)i = -|p| < 0$$

This curious shape seems to suggest narrow resonance and influence from the bound state pole at $\chi_{c0}(1P)$



Sasa Prelovsek

Scattering in LQCD



agreement not ideal, but not completely incompatible

Sasa Prelovsek

Conclusions

- bound states in mesonic sector:
 - corresponds to pole in T for p=i|p|, large and negative a0
 - not many candidates
 - $D_{s0}^{*}(3217)$: getting mature on the lattice
 - X(3872): rather solid lattice evidence, but currently less theoretically clean
- resonances in mesonic sector:
 - very mature is several PP scattering channels: $\pi\pi$, π K
 - studies barely started in others which are particularly interesting: charmonium sector,...

Tomorrow: scattering of hadrons with spin

Scattering of particles with spin

- motivation
- the relation to extract the scattering matrix from energies is known
- construction of operators (interpolators) by three different methods that give consistent results: reassuring
- example: Nucleon-pion scattering in p-wave, J^P=1/2⁺

lattice results and implications for the Roper resonance

Current status of hadron-hadron scattering from lattice

• most detailed scattering results exist only for spin-less particles

ππ , Kπ, KK, DK, Dπ, ...

 H⁽¹⁾ H⁽²⁾: where one or both H carry spin was explored mostly only for L=0 many interesting channels still unexplored, particularly for L>0

only few simulations available for L>0 using Luscher-type method:

* NN scattering (L=0, L>0), CALLAT, Phys. Lett. B 2017

* Nπ scattering (L=1, I=1/2, Roper Channel), Lang, Leskovec, Padmanath, S.P., PRD 2017

* Nπ scattering (L=1, I=3/2, Delta Channel), Andersen, Bulava, Hortz, Morningstar PRD 2018

* pπ scattering (L=0,2, I=2, non-resonant), HSC, 1802.05580

* something else ?

Motivation for lattice simulation and building ops

- in lattice QCD:
 - hadron-hadron scattering $H^{(1)} H^{(2)}$
 - where H is one of P,V,N hadrons, which is (almost) stable with respect to strong decay:

P=psuedoscalar ($J^{P}=0^{-}$) = π , K, D, B, η_{c} , ...

V=vector $(J^{P}=1^{-}) = D^{*}, B^{*}, J/\psi, \Upsilon_{b}, B_{c}^{*},...$ (but not ρ as is unstable...) N=nucleon $(J^{P}=1/2^{+}) = p, n, \Lambda, \Lambda_{c}, \Sigma, ...$ (but not N^{*} as is unstable...)

All combinations of two-hadron scattering are interesting and we will consider building ops for those :

PV: meson resonances and exotics (for example X(3872) in D<u>D</u>*; Z_c in π J/ ψ , D <u>D</u>* ..)

PN, VN: baryon resonances (e.g. in π N, K N ...) and pentaquarks (e.g. P_c in J/ ψ N channel)

NN: nucleon-nucleon and deuterium, baryon-baryon

• <u>in any lattice field theory (beyond SM)</u>

scattering channels with vector bosons and fermions

The need for interpolators

 $\langle O_i(t) | O_j^+(0) \rangle \rightarrow E_n \rightarrow \text{scattering matrix M}$ O=HH needed to create/annihilate HH

Relation between scattering matrix M and energies E_n are known

- two spinless particles Luscher (1991):

- two particles with arbitrary spin
Briceno, PRD89, 074507 (2014)
(other authors: some specific cases)
$$det_{oc} \left[det_{lS}Jm_{J} \left[\mathcal{M}^{-1} + \delta \mathcal{G}^{V}\right]\right] = 0$$

$$\left[\delta \mathcal{G}_{j}^{V}\right]_{Jm_{J},lS;J'm_{J'},l'S'} = \frac{ik_{j}^{*}\delta_{SS'}}{8\pi E^{*}}n_{j} \left[\delta_{JJ'}\delta_{m_{J}m_{J'}}\delta_{ll'} + i\sum_{l'',m''} \frac{(4\pi)^{3/2}}{k_{j}^{*l''+1}}c_{l''m''}^{d}(k_{j}^{*2};L) \times \sum_{m_{l},m_{l'},m_{S}} \langle lS, Jm_{J}|lm_{l}, Sm_{S}\rangle \langle l'm_{l'}, Sm_{S}|l'S, J'm_{J'}\rangle \int d\Omega \ Y_{l,m_{l}}^{*}Y_{l'',m''}^{*}Y_{l',m_{l'}}^{*}\right]$$

$$c_{lm}^{\mathbf{d}}(k_{j}^{*2};L) = \frac{\sqrt{4\pi}}{\gamma L^{3}} \left(\frac{2\pi}{L}\right)^{l-2} \mathcal{Z}_{lm}^{\mathbf{d}}[1; (k_{j}^{*}L/2\pi)^{2}].$$
related to eigen-energy E_n
Seese Prelovsek
Scattering in LQCD

Some other analytic work on lattice HH operators for hadrons with spin and L≠0

Partial-wave method for HH:

Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, 1508.00886 Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492]

Projection method for HH:

M. Göckeler et al., Phys.Rev. D86, 094513 (2012), [arXiv:1206.4141].

Helicity operators for single-H:

Thomas, Edwards and Dudek, Phys. Rev. D85, 014507 (2012), [arXiv:1107.1930]

Some aspects of helicity operators for HH:

Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492]. Dudek, Edwards and Thomas, Phys. Rev. D86, 034031 (2012), [arXiv:1203.6041].

Which CG of H_1 and H_2 to H_1H_2 irreps are nonzero; values of CG not published: Moore and Fleming, Phys. Rev. D 74, 054504 (2006), [arXiv:hep-lat/0607004].

Tetraqurak operators (appeared after our paper on operators) Cheung, Thomas, Dudek, Edwards [1709.01417, JHEP 2017]

etc ...

Constructing HH operators for scattering with spin: outline

based on S. P., U. Skerbis, C.B. Lang: arXiv:1607:06738, JHEP 2017

- three different methods to construct operators
- illuminate the proofs (given in the paper)
- verify they lead to consistent operators (that gives confidence in each one of them)
- they lead to complementary physics info
- explicit ops for PV, PN, VN, NN for lowest two momentum shells.

Ops with P_{tot}=0 are considered

 $H^{(1)}(p) H^{(2)}(-p)$, $P_{tot}=0$

Advantage of $P_{tot}=0$:

- parity P is a good number
- channels with even and odd L do not mix in the same irrep

For P_{tot}≠0: projection method can be applied as here.

Building blocks H: required transformation properties of H to prove correct transformation properties of HH

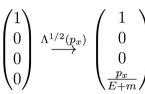
rotations R WignerD[$\{j, m_1, m_2\}, \psi, \theta, \phi$] inversion I $|p, s, m_s\rangle \equiv H_m^{\dagger}(p)|0\rangle$ rotations R $|p,s,m_s\rangle = \sum_{m'_s} D^s_{m'_s m_s}(R) |Rp,s,m'_s\rangle$, $I|p,s,m_s\rangle = (-1)^P |-p,s,m_s\rangle$ state $\begin{array}{c} \text{note:} \\ \mathbf{D} \twoheadrightarrow \mathbf{D}^{*} \end{array} \begin{pmatrix} RH_{m_{s}}^{\dagger}(p)R^{-1} = \sum_{m_{s}'} D_{m_{s}'m_{s}}^{s}(R)H_{m_{s}'}^{\dagger}(Rp) \ , & IH_{m_{s}}^{\dagger}(p)I = (-1)^{P}H_{m_{s}}^{\dagger}(-p) \ . \\ RH_{m_{s}}(p)R^{-1} = \sum_{m_{s}'} D_{m_{s}'m_{s}}^{s}(R)^{*}H_{m_{s}'}(Rp) \ , & IH_{m_{s}}(p)I = (-1)^{P}H_{m_{s}}(-p) \\ \\ D_{m_{s}m_{s}'}^{s}(R^{-1}) \end{array}$ creation field annihilation field m_s is a good quantum number at p=0: $S_z H_{m_s}(0) S_z^{-1} = m_s H_{m_s}(0)$

 m_s is not good quantum number in general for p≠0: in this case it denotes eigenvalue of S₇ of corresponding H_{ms}(p=0) Sasa Prelovsek Scattering in LQCD 34

Non-practical choice of $H_{ms}(p)$: canonical fields $H^{(c)}$

with correct transformation properties under R and I

 $H_{m_s}^{(c)}(p) \equiv L(p)H_{m_s}(0)$ L(p) is boost from 0 to p; drawback: H^(c)(p) depend on m, E,... $V_{m_s=1}(0) = \frac{1}{\sqrt{2}} \left[-V_x(0) + iV_y(0) \right] \rightarrow V_{m_s=1}^{(c)}(p_x) = \frac{1}{\sqrt{2}} \left[-\gamma V_x(p_x) + iV_y(p_x) \right] \qquad \begin{pmatrix} -1\\ i\\ 0 \end{pmatrix} \xrightarrow{\Lambda^1(p_x)} \begin{pmatrix} \gamma & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1\\ i\\ 0 \end{pmatrix} = \begin{pmatrix} -\gamma\\ i\\ 0 \end{pmatrix}$ $N_{m_s=1/2}(0) = \mathcal{N}_1(0) \rightarrow N_{m_s=1/2}^{(c)}(p_x) \propto \mathcal{N}_1(p_x) + \frac{p_x}{E+m} \mathcal{N}_4(p_x)$ $\begin{pmatrix} 1\\0\\0 \end{pmatrix} \stackrel{\Lambda^{1/2}(p_x)}{\longrightarrow} \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ $\mathcal{N}_{\mu=1,..,4}$ are Dirac components in Dirac basis



Non-practical choice of H: canonical fields H^(c)

with correct transformation properties under R and I

 $H_{m_s}^{(c)}(p) \equiv L(p)H_{m_s}(0)$ L(p) is boost from 0 to p; drawback: H^(c)(p) depend on m, E,... $V_{m_s=1}(0) = \frac{1}{\sqrt{2}} \left[-V_x(0) + iV_y(0) \right] \rightarrow V_{m_s=1}^{(c)}(p_x) = \frac{1}{\sqrt{2}} \left[-\gamma V_x(p_x) + iV_y(p_x) \right] \qquad \begin{pmatrix} -1 \\ i \\ 0 \end{pmatrix} \xrightarrow{\Lambda^1(p_x)} \begin{pmatrix} \gamma & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ i \\ 0 \end{pmatrix} = \begin{pmatrix} -\gamma \\ i \\ 0 \end{pmatrix}$ $N_{m_s=1/2}(0) = \mathcal{N}_1(0) \rightarrow N_{m_s=1/2}^{(c)}(p_x) \propto \mathcal{N}_1(p_x) + \frac{p_x}{E+m} \mathcal{N}_4(p_x)$ $\begin{pmatrix} 1\\0\\0 \end{pmatrix} \stackrel{\Lambda^{1/2}(p_x)}{\longrightarrow} \begin{pmatrix} 1\\0\\0 \end{pmatrix}$

 $\mathcal{N}_{\mu=1,\dots,4}$ are Dirac components in Dirac basis

Practical choice of H_{ms}(p)

with correct transformation properties under R and I

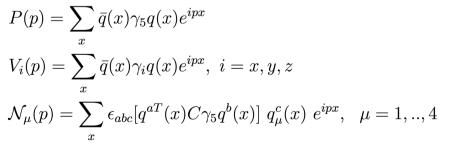
$$V_{m_s=\pm 1}(p) = \frac{1}{\sqrt{2}} [\mp V_x(p) + iV_y(p)], \quad V_{m_s=0}(p) = V_z(p)$$

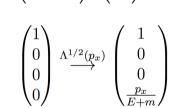
$$N_{m_s=1/2}(p) = \mathcal{N}_{\mu=1}(p)$$
, $N_{m_s=-1/2}(p) = \mathcal{N}_{\mu=2}(p)$

simple examples

Sasa Prelovsek

Scattering in LQCD





Required transformation properties of O=HH

continuum R

 $RO^{J,m_J}(P_{tot}=0)R^{-1} = \sum_{m'_J} D^J_{m_Jm'_J}(R^{-1})O^{J,m'_J}(0) \qquad IO^{J,m_J}(0)I = (-1)^P O^{J,m_J}(0)$ good parity since P_{tot}=0 !

relevant rotations: $R \in O^{(2)}$ O with 24 el. for J=integer ; O² with 48 elements for J=half-integer The group including inversion I: O_h with 48 el. for J=integer ; O²_h with 96 elements for J=half-integer

The representation O^{J} is irreducible under continuum R, but it is reducible under discrete R in $O^{(2)}$. The operators should transform according to certain irreducible representation Γ and its row r.

$$\begin{split} R|\Gamma,r\rangle &= \sum_{r'} T_{r',r}^{\Gamma}(R)|\Gamma,r'\rangle \quad R \in O^{(2)}, \qquad I|\Gamma,r\rangle = (-1)^{P}|\Gamma,r\rangle , \qquad \qquad \text{discrete } \mathsf{R} \\ RO_{\Gamma,r}R^{-1} &= \sum_{r'} T_{r,r'}^{\Gamma}(R^{-1})O_{\Gamma,r'} \quad R \in O^{(2)}, \qquad IO_{\Gamma,r}I = (-1)^{P}O_{\Gamma,r} \\ & \frac{\mathsf{J} \qquad \Gamma (\dim_{\Gamma})}{0 \qquad A_{1}(1)} \\ \frac{\mathsf{J} \qquad \Gamma (\dim_{\Gamma})}{1 \qquad G_{1}(2)} \end{split}$$

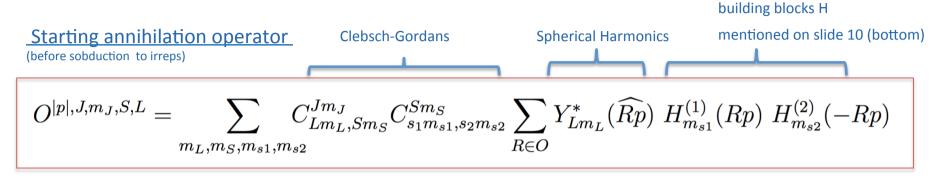
T(R) given for all irreps in Bernard, Lage, Meißner, Rusetsky, JHEP 2008, 0806.4495 We use same conventions for rows.

Γ (dim _{Γ})
$A_1(1)$
$G_1(2)$
$T_{1}(3)$
H(4)
$E(2) \oplus T_2(3)$
$H(4)\oplus G_2(2)$
$A_2(1)\oplus T_1(3)\oplus T_2(3)$

Method I: Projection operators

$$\begin{split} O_{|p|,\Gamma,r,n} &= \sum_{\tilde{R} \in O_{h}^{(2)}} T_{r,r}^{\Gamma}(\tilde{R}) \ \tilde{R} \ H^{(1),a}(p) \ H^{(2),a}(-p) \ \tilde{R}^{-1} , \\ n = 1, ..., n_{max} \end{split} \qquad n = 1, ..., n_{max} \end{split}$$

Method II: Partial-wave operators



Proposed for NN in [Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, CALLAT, 1508.00886] There Y_{Im}* appears where we have Y_{Im}

Proof (in our paper and next slide): the correct transformation properties

$$R_a O^{J,m_J,S,L} R_a^{-1} = \sum_{m'_J} D^J_{m_J m'_J}(R_a^{-1}) O^{J,m'_J,S,L}$$

follow from transformations of H (slide 8) and properties of C, Y_{lm} and D.

Example of PV operators

$$O^{|p|=1,J=1,m_J=0,L=0,S=1} = \sum_{p=\pm e_x,\pm e_y} P(p)V_z(-p) ,$$

$$O^{|p|=1,J=1,m_J=0,L=2,S=1} = \sum_{p=\pm e_x,\pm e_y} P(p)V_z(-p) - 2\sum_{p=\pm e_z} P(p)V_z(-p)$$

Subduction to irreps discussed later on.

Sasa Prelovsek

Proof: partial-wave operators

$$O^{|p|,J,m_J,S,L} = \sum_{m_L,m_S,m_{s1},m_{s2}} C^{Jm_J}_{Lm_L,Sm_S} C^{Sm_S}_{s_1m_{s1},s_2m_{s2}} \sum_{R \in O} Y^*_{Lm_L}(\widehat{Rp}) \ H^{(1)}_{m_{s1}}(Rp) \ H^{(2)}_{m_{s2}}(-Rp)$$

Proof of correct transformation properties:

$$\begin{aligned} R_{a}O^{J,m_{J},S,L}R_{a}^{-1} &= \sum_{m_{L},m_{S},m_{s1},m_{s2}} C_{Lm_{L},Sm_{S}}^{Jm_{J}}C_{s_{1}m_{s1},s_{2}m_{s2}}^{Sm_{S}} \sum_{R \in O^{(2)}} Y_{Lm_{L}}^{*}(\hat{R}p) R_{a}H_{m_{s1}}(Rp)H_{m_{s2}}(-Rp)R_{a}^{-1} \\ &= \sum_{m_{L},m_{S},m_{s1},m_{s2}} C_{Lm_{L},Sm_{S}}^{Jm_{J}}C_{s_{1}m_{s1},s_{2}m_{s2}}^{Sm_{S}} \sum_{R \in O_{h}} Y_{Lm_{L}}^{*}(\hat{R}p) \\ &\times \sum_{m_{s1}'} D_{m_{s1}m_{s1}'}^{s_{1}}(R_{a}^{-1})H_{m_{s1}'}(R_{a}Rp) \sum_{m_{s2}'} D_{m_{s2}m_{s2}'}^{s_{2}}(R_{a}^{-1})H_{m_{s2}'}(-R_{a}Rp) , \end{aligned}$$

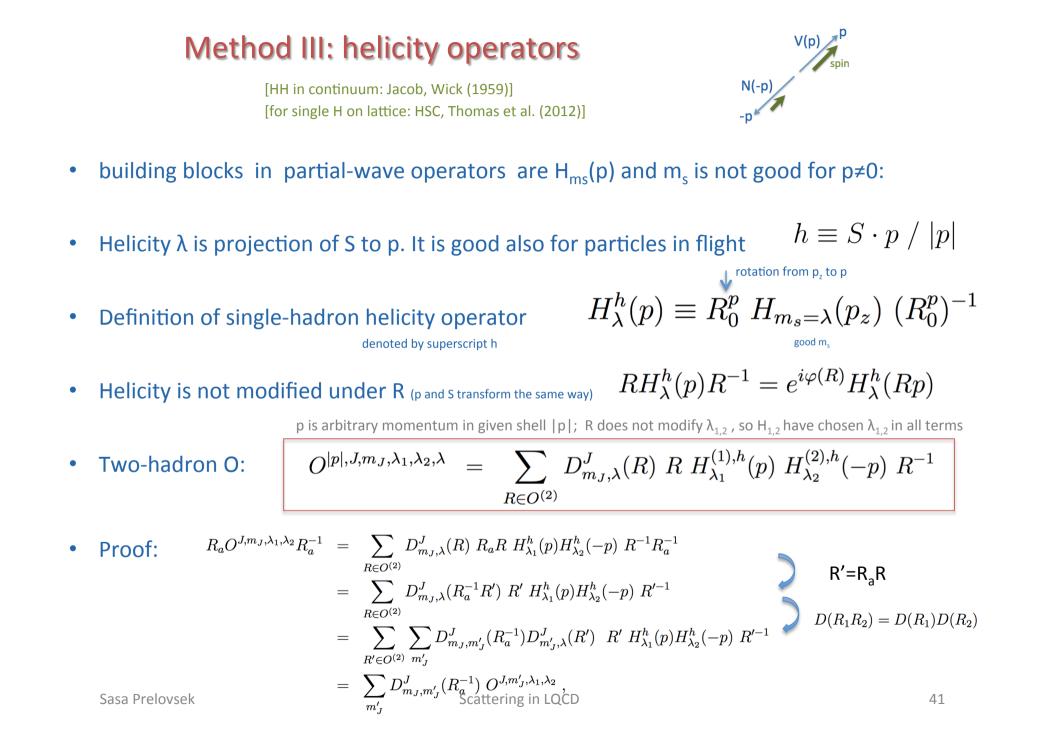
$$Y_{Lm_{L}}^{*}(Rp) = Y_{Lm_{L}}^{*}(R_{a}^{-1}(R'p)) = \sum_{m'_{L}} D_{m_{L}m'_{L}}^{L}(R_{a}^{-1})Y_{Lm'_{L}}^{*}(R'p) \qquad \qquad R' \equiv R_{a}R \qquad \qquad Y_{Lm_{L}}^{*}(R_{1}p) = \sum_{m'_{L}} D_{m_{L}m'_{L}}^{L}(R_{1})Y_{Lm'_{L}}^{*}(p)$$

$$D_{m_{s1}m'_{s1}}^{s_1}(R_a^{-1})D_{m_{s2}m'_{s2}}^{s_2}(R_a^{-1}) = \sum_{\tilde{S},\tilde{m}_S,m'_S} C_{s_1m_{s1},s_2m_{s2}}^{\tilde{S},\tilde{m}'_S} C_{s_1m'_{s1},s_2m'_{s2}}^{\tilde{S},m'_S} D_{\tilde{m}_Sm'_S}^{\tilde{S}}(R_a^{-1}) \qquad \sum_{m_{s1},m_{s2}} C_{s_1m_{s1},s_2m_{s2}}^{Sm_s} C_{s_1m'_{s1},s_2m_{s2}}^{\tilde{S},\tilde{m}'_S} \delta_{\tilde{S},\tilde{S}}$$

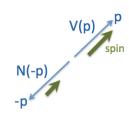
$$D_{m_Lm'_L}^L(R_a^{-1})D_{\tilde{m}_Sm'_S}^{\tilde{S}}(R_a^{-1}) = \sum_{\tilde{J},\tilde{m}_J,m'_J} C_{Lm_L,\tilde{S}\tilde{m}_S}^{\tilde{J},\tilde{m}_J} C_{Lm'_L,\tilde{S}m'_S}^{\tilde{J},m'_J} D_{\tilde{m}_Jm'_J}^{\tilde{J}}(R_a^{-1}) \qquad \sum_{m_L,m_S} C_{Lm_L,Sm_S}^{Jm_J} C_{Lm_L,Sm_S}^{\tilde{J},\tilde{m}_J} \delta_{J,\tilde{J}}$$

$$\begin{aligned} R_a O^{J,m_J,S,L} R_a^{-1} &= \\ &= \sum_{m'_J} D^J_{m_J m'_J}(R_a^{-1}) \sum_{m'_L,m'_S,m'_{s1},m'_{s2}} C^{Jm'_J}_{Lm'_L,Sm'_S} C^{Sm'_S}_{s_1m'_{s1},s_2m'_{s2}} \sum_{R' \in O^{(2)}} Y^*_{Lm'_L}(\hat{R'}p) H_{m'_{s1}}(R'p) H_{m'_{s2}}(-R'p) \\ &= \sum_{m'_J} D^J_{m_J m'_J}(R_a^{-1}) O^{J,m'_J,S,L} \end{aligned}$$

Sasa Prelovsek



Method III: helicity operators (continued)



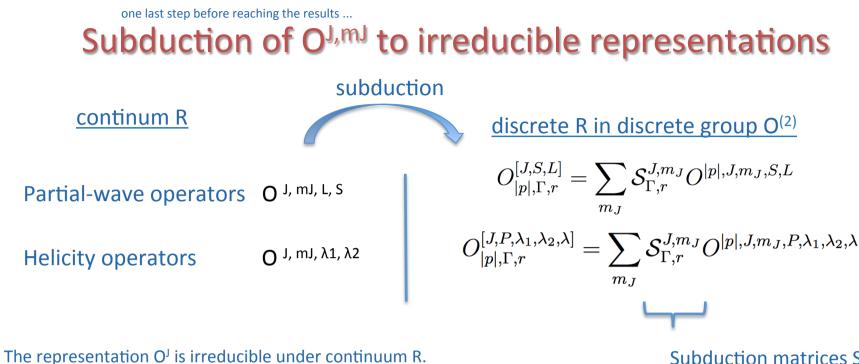
Using definitions of $H_{\lambda}^{h}(p) \equiv R_{0}^{p} H_{m_{s}=\lambda}(p_{z}) (R_{0}^{p})^{-1}$ and parity projection $\frac{1}{2}(\mathcal{O} + PI\mathcal{O}I)$ p is arbitrary momentum in given shell [p] $O^{|p|,J,m_{J},P,\lambda_{1},\lambda_{2},\lambda} = \frac{1}{2} \sum_{R \in O^{(2)}} D_{m_{J},\lambda}^{J}(R) RR_{0}^{p} [H_{m_{s_{1}}=\lambda_{1}}^{(1)}(p_{z})H_{m_{s_{2}}=-\lambda_{2}}^{(2)}(-p_{z})$ $+ P I H_{m_{s_{1}}=\lambda_{1}}^{(1)}(p_{z})H_{m_{s_{2}}=-\lambda_{2}}^{(2)}(-p_{z}) I] (R_{0}^{p})^{-1}R^{-1}$

- H are building blocks from slide 10 (bottom): actions of R and I on H_{ms}(p) are given in slide 8
- p is arbitrary momentum in given shell |p|; there are several choices of R_0^p which rotate from p_z to p:
 - these lead to different phases in definition of H_{λ}^{h} : inconvenience
 - but they lead to the same O above (modulo irrelevant overall factor): so no problem for such construction
- Simple choice for momentum shell |p|=1: $p=p_z$ and $R_0^p=Identity$
- paper provides details how to use functions from Mathematica for construction, also since Mathematica uses non-conventional defnition of D

$$D_{m,m'}^{j}[R_{\alpha\beta\gamma}^{\omega}] = F \cdot \texttt{WignerD}[\{j,m,m'\}, -\alpha, -\beta, -\gamma], \qquad F = \begin{cases} 1 : j = \texttt{integer} \\ \pm 1 : j = \texttt{halfinteger}, \ \mathsf{F}(\omega + 2\pi) = -\mathsf{F}(\omega) \text{, choice of sign in our paper} \end{cases}$$

$$\{\alpha, \beta, \gamma\} = \texttt{EulerAngles}[T] \quad T = \exp(-i\vec{n}\vec{J}\omega) \text{ and } (J_k)_{ij} = -i\epsilon_{ijk}$$
MATHEMATICA

Sasa Prelovsek



But it is reducible under R in discrete group lattice $O^{(2)}$.

Operators that transform according to irrep Γ and row r obtained via subduction.

Subduction matrices S

[Dudek et al., PRD82, 034508 (2010) Edwards et al, PRD84, 074508 (2011)]

Single-hadron operators H: experience by Hadron Spectrum collaboration Phys. Rev. D 82, 034508 (2010)

subduced operators O^[J] carry memory of continuum spin and dominantly couple to states with this J ٠

Expectation for partial-wave and helicity operators HH obtained by subduction :

- $O_{|p|,\Gamma,r}^{[J,S,L]}$ would dominantly couple to eigen-states with continuum (J,L,S)
- $O^{[J,P,\lambda_1,\lambda_2,\lambda]}_{|p|,\Gamma,r}$ would dominantly couple to eigen-states with continuum (J, λ 1, λ 2)

valuable for simulations give physics intuition on quant. num.

Sasa Prelovsek

Example: P(p)V(-p) operators

J	$\Gamma \; (\dim_{\Gamma})$
0	$A_1(1)$
$\frac{1}{2}$ 1 $\frac{3}{2}$ 2 $\frac{5}{2}$ 3	$G_1(2)$
ĩ	$T_{1}(3)$
$\frac{3}{2}$	H(4)
$\tilde{2}$	$E(2)\oplus T_2(3)$
$\frac{5}{2}$	$H(4) \oplus G_2(2)$
$\tilde{3}$	$A_2(1)\oplus T_1(3)\oplus T_2(3)$

row=1 provided

Conventions for row Bernard et al. , 0806.4495

rows of T1: (x,y,z)

rows of T2: (yz,xz,xy)

p = 0

$$T_1^+$$
:
 $O_{T_1^+,r=1} = P(0)V_x(0)$

$$O_{T_1^+,r=1}^{[J=1,L=0,S=1]}=O_{T_1^+,r=1}$$

other irreps: O=0

$$\begin{aligned} |\mathbf{p}| &= 1 \\ A_{1}^{-} : \\ O_{A_{1}^{-},r=1} &= P(e_{x})V_{z}(-e_{x}) - P(-e_{x})V_{z}(e_{z}) + P(e_{y})V_{y}(-e_{y}) - P(-e_{y})V_{y}(e_{y}) \\ &+ P(e_{z})V_{z}(-e_{z}) - P(-e_{z})V_{z}(e_{z}) \end{aligned}$$

$$\begin{aligned} O_{A_{1}^{-},r=1}^{[J=0,m_{J}=0,m_$$

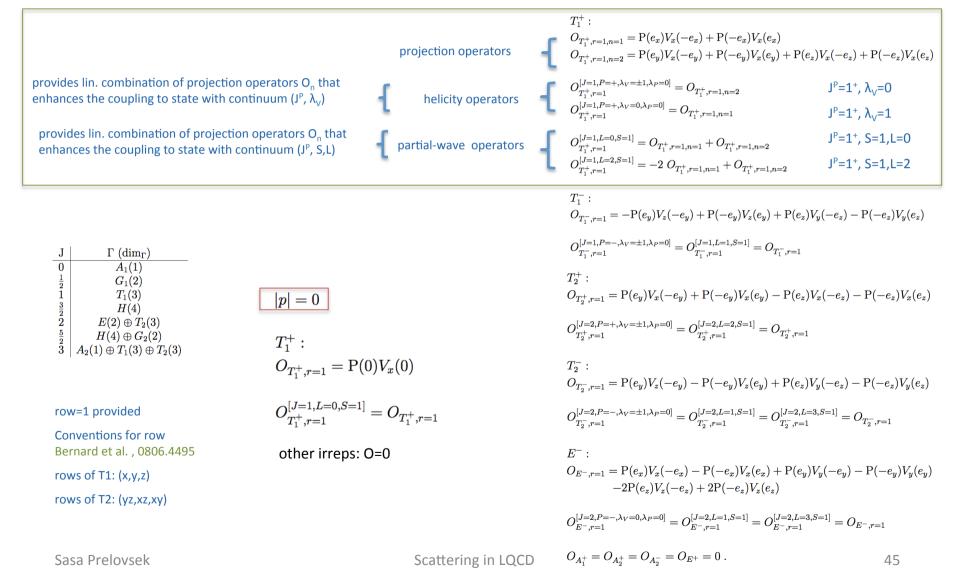
Example: P(p)V(-p) operators

|p|=1

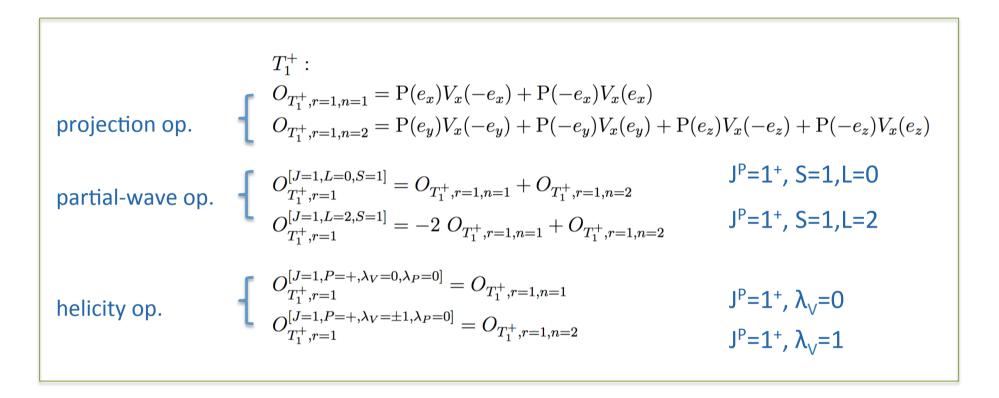
$$A_1^-$$
 :

$$\begin{array}{l} P_{A_{1}} \\ O_{A_{1}^{-},r=1} = \mathcal{P}(e_{x})V_{x}(-e_{x}) - \mathcal{P}(-e_{x})V_{x}(e_{x}) + \mathcal{P}(e_{y})V_{y}(-e_{y}) - \mathcal{P}(-e_{y})V_{y}(e_{y}) \\ + \mathcal{P}(e_{z})V_{z}(-e_{z}) - \mathcal{P}(-e_{z})V_{z}(e_{z}) \end{array}$$

 $O_{A_1^-,r=1}^{[J=0,m_J=0,P=-,\lambda_V=0,\lambda_P=0]} = O_{A_1^-,r=1}^{[J=0,m_J=0,L=1,S=1]} = O_{A_1^-,r=1}$



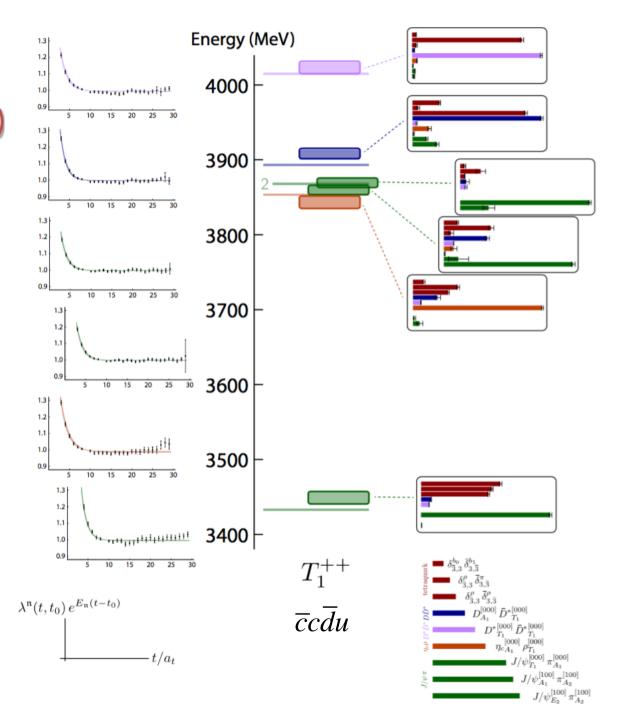
P(1)V(-1) operators, T₁⁺, row=r=1



Partial-wave and helicity operators expressed in terms of projection operators throughout and consistency is found.

Two levels P(1) V(-1)= $\pi(1)$ J/ $\Psi(-1)$ observed in T₁⁺

HSC, Gavin Cheung et al, JHEP 2017



Results for operators

Explicit expressions all for H⁽¹⁾(p)H⁽²⁾(-p)

- PV, PN, VN, NN

- in three methods

- all irreps, |p|=0,1

given in [S. P., U. Skerbis, C.B. Lang, arXiv:1607:06738, JHEP 2016]

operators from three methods are consistent (not equal) with each other

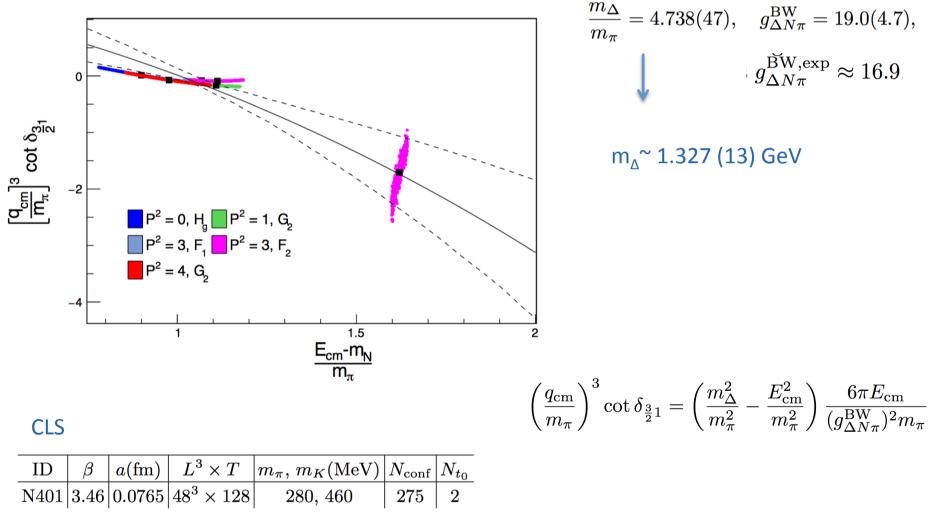
Relation between partial-wave and helicity operators is derived

$$O^{|p|,J,m_J,S,L} = \sqrt{\frac{2L+1}{4\pi}} \sum_{\lambda=-S}^{S} \sum_{\lambda_1,\lambda_2} \sum_{\lambda'} D^J_{\lambda',\lambda}(R^p_0) C^{J\lambda}_{L0,S\lambda} C^{S\lambda}_{s_1\lambda_1,s_2-\lambda_2} O^{|p|,J,m_J,\lambda',\lambda_1,\lambda_2}$$

Sasa Prelovsek

N π scattering in the Δ (1232) channel L=1, I=3/2, J^P=3/2⁺

Andersen, Bulava, Hortz, Morningstar, PRD 2018



Sasa Prelovsek

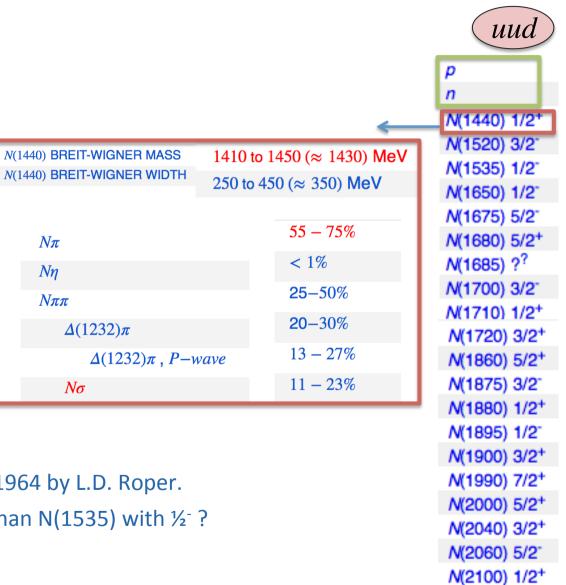
L=1, I=1/2

N π scattering in J^P=¹/₂⁺ and the Roper resonance

C.B. Lang, L. Leskovec, M. Padmanath, S.P.

Phys. Rev. D 95 (2017) 014510; hep-lat:1610.01422

Brief intro to Roper resonance



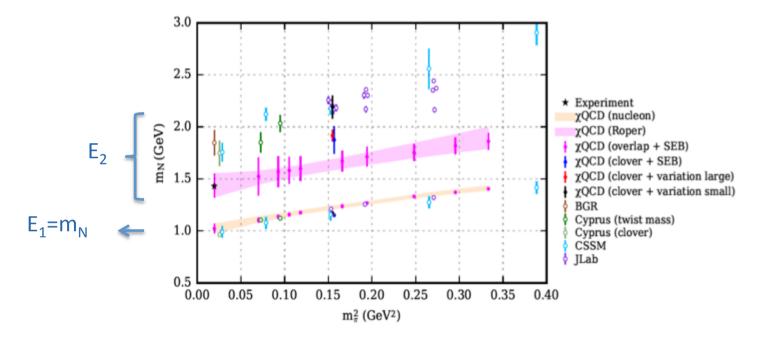
Puzzling since its discovery in 1964 by L.D. Roper. In particular: why is it lighter than N(1535) with $\frac{1}{2}$?

Sasa Prelovsek

Some previous simulations of the proton/Roper channel: JP=1/2+

- all used just O=qqq interpolators (with exception of Adelaide 1608.03051 which did not find two-hadron state in spite of that)
- ignored that Roper is strongly decaying resonance
- assumed that E₁=m_N (correct)

 $E_2=m_R$ (not correct); E_2 could in principle be energy of $N\pi$ eigenstate



 χ QCD : Liu *et al.*, arXiv:1403.6847[hep-ph]

BGR : Engel et al., PRD, arXiv:1301.4318[hep-lat]

Cyprus : Alexandrou et al., PRD, arXiv:1411.6765[hep-lat]

JLab : Edwards *et al.*, PRD, arXiv:1104.5152[hep-lat] CSSM : Adelaide group, PLB, arXiv:1011.5724[hep-lat]

Figure courtesy ; K. F. Liu, arXiv:1609.02572

Lattice simulation

Lattice size	N _f	$N_{ m cfgs}$	m_{π} [MeV]	<i>a</i> [fm]	<i>L</i> [fm]
$32^{3} \times 64$	2 + 1	197(193)	156(7)(2)	0.0907(13)	2.9

PACS-CS lattices, Aoki et al., PRD, arXiv:0807.1661.

- Wilson clover fermions
- Lowest non-interacting $N(1)\pi(-1)$ states in p-wave expected at

$$E \approx \sqrt{\left(\frac{2\pi}{L}\right)^2 + m_\pi^2} + \sqrt{\left(\frac{2\pi}{L}\right)^2 + m_N^2} \approx 1.5 \,\text{GeV}$$

This is in the Roper resonance region: favorable

Implementing nucelon-pion interpolators in J^P=1/2⁺ channel (for the first time in this channel)

- only total momentum P=0 is simulated
- P≠0 not used (since p-wave mixes with s-wave in all irreps where p-wave appears)

momenta of hadrons in units of $2\pi/L$

$$\begin{split} O_{1,2}^{N\pi} &= -\sqrt{\frac{1}{3}} \left[p_{-\frac{1}{2}}^{1,2}(-e_x)\pi^0(e_x) - p_{-\frac{1}{2}}^{1,2}(e_x)\pi^0(-e_x) \\ &\quad -ip_{-\frac{1}{2}}^{1,2}(-e_y)\pi^0(e_y) + ip_{-\frac{1}{2}}^{1,2}(e_y)\pi^0(-e_y) \\ &\quad + p_{\frac{1}{2}}^{1,2}(-e_z)\pi^0(e_z) - p_{\frac{1}{2}}^{1,2}(e_z)\pi^0(-e_z) \right] \\ &\quad + \sqrt{\frac{2}{3}} \left[\{p \to n, \pi^0 \to \pi^+\} \right] \quad [narrower] \\ O_{3,4,5}^{N_w} &= p_{\frac{1}{2}}^{1,2,3}(0) \quad [wider] \\ O_{6,7,8}^{N_m} &= p_{\frac{1}{2}}^{1,2,3}(0) \quad [narrower] \\ O_{9,10}^{N_\sigma} &= p_{\frac{1}{2}}^{1,2}(0)\sigma(0) \quad [narrower] \end{split}$$

$$N_{m_s=1/2}^{i}(\mathbf{n}) = \mathcal{N}_{\mu=1}^{i}(\mathbf{n}) , \ N_{m_s=-1/2}^{i}(\mathbf{n}) = \mathcal{N}_{\mu=2}^{i}(\mathbf{n})$$
$$\mathcal{N}_{\mu}^{i}(\mathbf{n}) = \sum_{\mathbf{x}} \epsilon_{abc} [u^{aT}(\mathbf{x},t)\Gamma_{2}^{i}d^{b}(\mathbf{x},t)] \ [\Gamma_{1}^{i}q^{c}(\mathbf{x},t)]_{\mu} \ \mathrm{e}^{i\mathbf{x}\cdot\mathbf{n}\frac{2\pi}{L}}$$
$$i = 1, 2, 3: \quad (\Gamma_{1}^{i},\Gamma_{2}^{i}) = (\mathbf{1}, C\gamma_{5}), \ (\gamma_{5}, C), \ (i\mathbf{1}, C\gamma_{t}\gamma_{4})$$

$$\pi^{+}(\mathbf{n}) = \sum_{\mathbf{x}} \bar{d}(\mathbf{x}, t) \gamma_{5} u(\mathbf{x}, t) \mathrm{e}^{i\mathbf{x}\cdot\mathbf{n}\frac{2\pi}{L}}$$
$$\sigma(0) = \frac{1}{\sqrt{2}} \sum_{\mathbf{x}} [\bar{u}(\mathbf{x}, t)u(\mathbf{x}, t) + \bar{d}(\mathbf{x}, t)d(\mathbf{x}, t)] .$$

Sasa Prelovsek

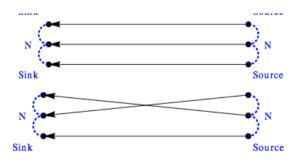
Computing 10x10 matrix C: Wick contractions

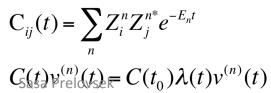
$$C_{ij}(t) = \langle \Omega | O_i(t + t_{
m src}) \bar{O}_j(t_{
m src}) | \Omega \rangle$$

TABLE III. Number of Wick contractions involved in computing correlation functions between interpolators in Eq. (7).

$\overline{O_i ackslash O_j}$	O^N	$O^{N\pi}$	$O^{N\sigma}$
$\overline{O^N}$	2	4	7
$O^{N\pi}$	4	19	19
$O^{N\sigma}$	7	19	33

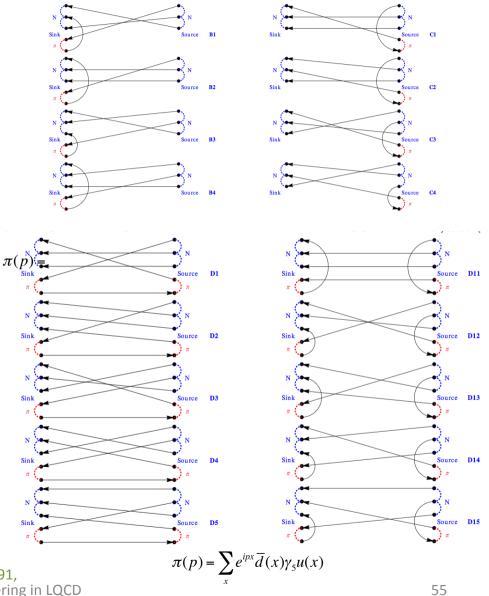
- just part of Wick contractions plotted
- computational challenge:
- all-to-all quark propagators needed;
- full distillation employed [Peardon et al, 2009]



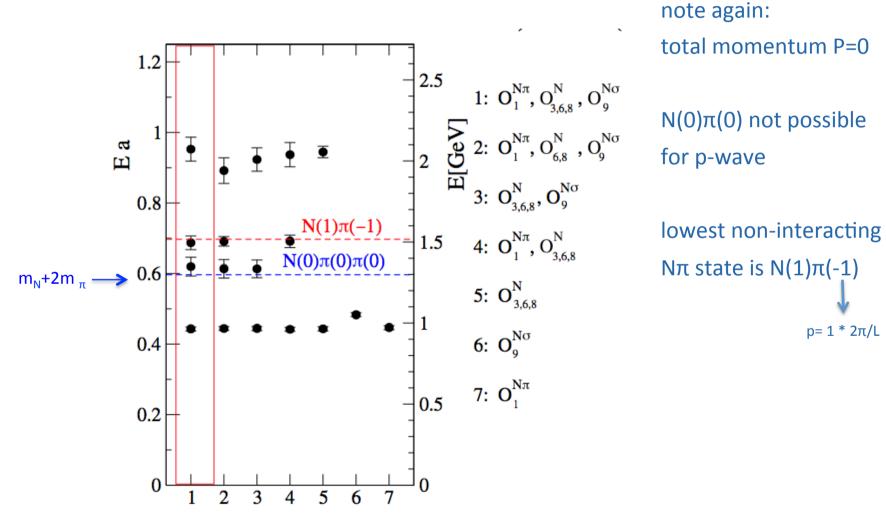


[Luscher & Wolf 1991, Scattering in LQCD Blossier et al 2009]

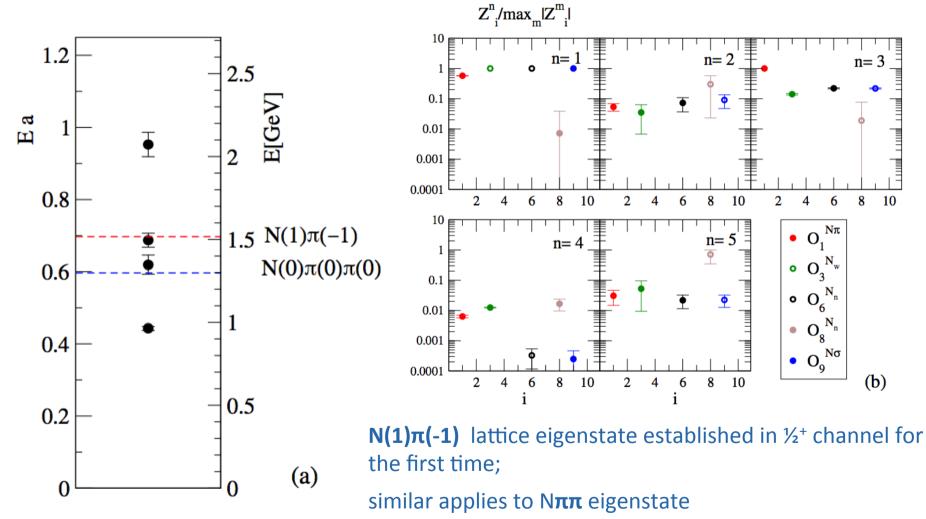
part of them are similar as in $N\pi$ in s-wave [Verduci, Lang, PRD 2013] plots taken from there



E_n: dependence on the interpolators used



Final E_n and overlaps $Z_i^n = \langle O_i | n \rangle$



Lang, Leskovec, Padmanath, S.P. PRD 2017

Sasa Prelovsek

(b)

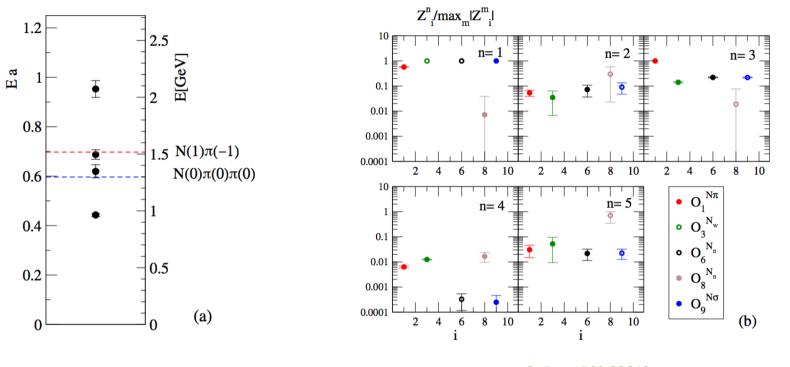
n= 3

10

8

6

analytic work by O. Bar within ChPT Nn and Nnn pollution of Nucleon observables



ChPT based on local O(qqq) applies if $r_{smear} m_{\pi}$ =small and L m_{π} =sizable not strictly satisfied in our simulation, so comparison not expected to work perfectly

O. Bar, 1503.03649, 1802.10442, private com.

lat

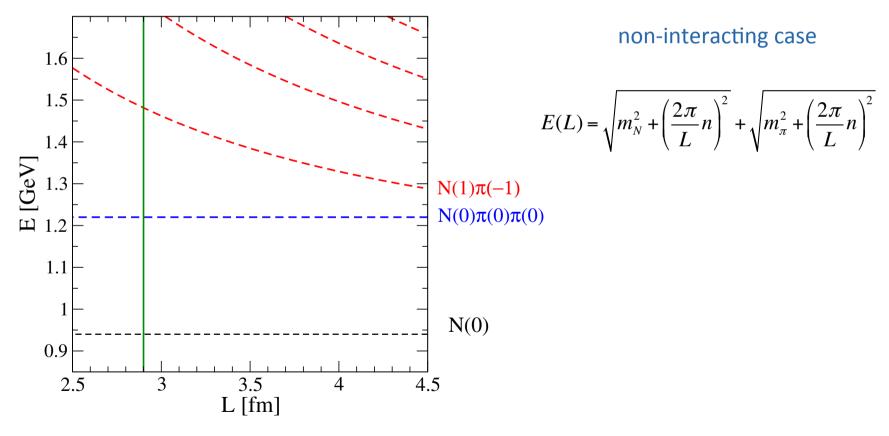
$$0.42 \approx \sqrt{c_1^+} \leftrightarrow \frac{\left\langle O^{qqq} \left| N(1)\pi(-1) \right\rangle}{\left\langle O^{qqq} \left| N(0) \right\rangle} \right. = \frac{Z_{i=6}^{n=3}}{Z_{i=6}^{n=1}} \approx 0.2$$
$$0.036 \approx \sqrt{c_{0.0}} \leftrightarrow \frac{\left\langle O^{qqq} \left| N(0)\pi(0)\pi(0) \right\rangle}{\left\langle O^{qqq} \left| N(0) \right\rangle} = \frac{Z_{i=6}^{n=3}}{Z_{i=6}^{n=1}} \approx 0.07(4)$$

$$N(p_{n})\pi(-p_{n}):
$$N\pi\pi:$$$$

Sasa Prelovsek

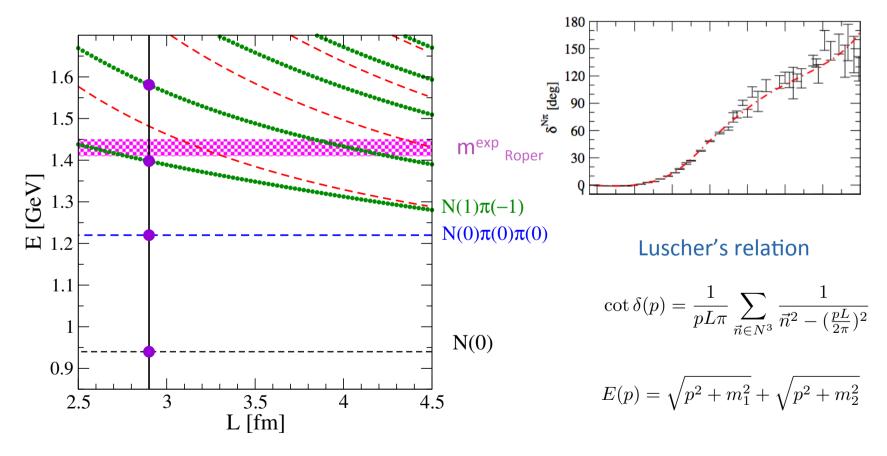
E not precise enough to reliably determine ΔE and δ : not unexpected for $m_{\pi} \approx 156$ MeV !! Alternative path to reach physics conclusions from the results.

(A) Expectation from elastic N π scattering based on low-lying Roper (from experimental $\delta_{N\pi}$)



Sasa Prelovsek

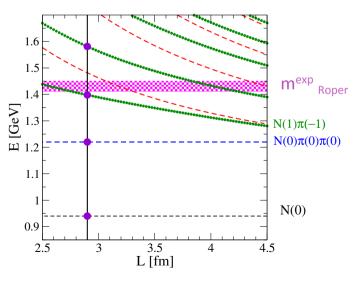
(A) Expectation from elastic N π scattering based on low-lying Roper (from experimental $\delta_{N\pi}$)

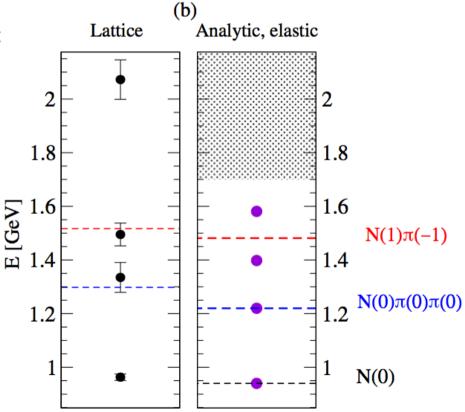


Sasa Prelovsek

(A) Expectation from elastic N π scattering based on low-lying Roper (from experimental $\delta_{N\pi}$)

- lattice data is qualitatively different from the prediction of the decoupled $N\pi$ channel with resonant phase
- the scenario of mainly elastic low-lying Roper is not supported by the lattice data
- this calls for other possibilities for experimental state: one possibility is that <u>the coupling of Nπ with other channels (Nσ or Nππ) is essential for low-lying Roper resonance in experiment</u>: this is dubbed dynamically generated Roper resonance [Krehl, Hanhart, Krewald, Speth, PRC 62 025207 (2000), many other follow up-works]





(B) 3 scenarios with coupled $N\pi - N\sigma - \Delta\pi$ scattering

Hamiltonian EFT study of Roper Adelaide group, Leinneweber et al, PRD 2017, 1607.04536

$$H = H_0 + H_I.$$

$$H_0 = \sum_{B_0} |B_0\rangle m_B^0 \langle B_0|$$

$$+ \sum_{\alpha} \int d^3 \vec{k} |\alpha(\vec{k})\rangle$$

$$\times \left[\sqrt{m_{\alpha_1}^2 + \vec{k}^2} + \sqrt{m_{\alpha_2}^2 + \vec{k}^2} \right] \langle \alpha(\vec{k})|.$$

$$H_I = g + v,$$
 wit $g = \sum_{lpha B_0} \int d^3 \vec{k} \{ |lpha(\vec{k})
angle G^{\dagger}_{lpha, B_0}(k) \langle B_0| + |B_0
angle G_{lpha, B_0}(k) \langle lpha(\vec{k})| \},$

$$v = \sum_{lpha,eta} \int d^3ec{k} d^3ec{k}' |lpha(ec{k})
angle V^S_{lpha,eta}(k,k')\langleeta(ec{k}')|_{lpha,eta}$$

caveat: σ treated as stable Sasa Prelovsek **3 scenarios**, which all fit experimental Nπ scattering well

 $\frac{1: with \ bare \ Roper \ B0}{without \ bare \ nucleon}$ no coupling between N π – N σ

 $\frac{II: without \ bare \ Roper \ BO}{without \ bare \ nucleon \ N;}$ with strong N π – N σ coupling

III: without bare Roper B0 with bare nucleon N; with strong $N\pi - N\sigma$ coupling

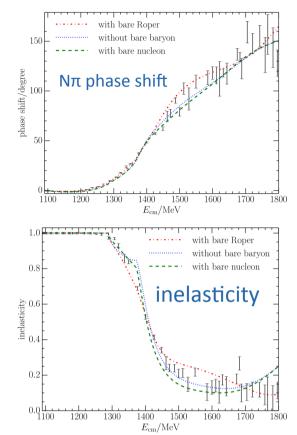


TABLE I. Best-fit parameters and resultant pole positions in the three scenarios: I, the system with the bare Roper; II, the system without a bare state; and III, the system with a bare nucleon. Underlined parameters were fixed in the fitting of that scenario. The experimental pole position for the Roper resonance is $(1365 \pm 15) - (95 \pm 15)i$ MeV [4].

	<u> </u>		
Parameter	Ι	П	III
$g^{S}_{\pi N}$	0.161	0.489	0.213
$g^{S}_{\pi\Lambda}$	-0.046	-1.183	-1.633
$g^{S}_{\pi N}$ $g^{S}_{\pi \Delta}$ $g^{S}_{\pi N,\pi \Delta}$	0.006	-1.008	-0.640
$g^{S}_{\pi N,\sigma N}$	<u>0</u>	2.176	2.401
$g^{S}_{\sigma N}$	<u>0</u>	9.898	9.343
$g_{B_0\pi N}$	0.640	<u>0</u>	-0.586
$g_{B_0\pi\Delta}$	1.044	<u>0</u>	1.012
$g_{B_0\sigma N}$	2.172	<u>0</u>	2.739
m_B^0/GeV	2.033	<u>∞</u>	1.170
$\Lambda_{\pi N}/\text{GeV}$	<u>0.700</u>	0.562	<u>0.562</u>
$\Lambda_{\pi\Delta}/\text{GeV}$	<u>0.700</u>	0.654	<u>0.654</u>
$\Lambda_{\sigma N}/\text{GeV}$	0.700	1.353	<u>1.353</u>
Pole (MeV)	1380 - 87i	1361 - 39i	621357 - 36

(B) 3 scenarios with coupled $N\pi - N\sigma - \Delta\pi$ scattering

Hamiltonian EFT study of Roper resonance Adelaide group, Leinneweber et al, PRD 2017, 1607.04536 predicted E_n for PACS-CS lattice with L=2 fm lattice results in 3 scenarios on previous page Hamiltonian Effective Field Theory Lattice 1.7 $\Delta(1)\pi(-1)$ N(2)π(-2)* N(1)σ(-1) N(1)σ(-1)* N(1)σ(-1)* 1.6 1.5 ۲ 1.4 ● [] 1.3 ⊡ 1.2 1.1 0.9 0.8 I: with bare II: without III: with bare Roper bare baryon nucleon

3 scenarios, which all fit experimental Nπ scattering well

<u>I : with bare Roper B0</u> without bare nucleon no coupling between $N\pi - N\sigma$

 $\frac{II: without \ bare \ Roper \ BO}{with \ bare \ nucleon \ N;}$ with strong N π – N σ coupling

III: without bare Roper B0 with bare nucleon N; with strong $N\pi - N\sigma$ coupling

comparing analytic predictions and lattice data:

- scenario I disfavoured
- scenarios II, III favoured
- Roper as dynamically generated resonance favoured

Structure of the Roper resonance from Lattice QCD constraints

Leineweber et al. 1703.10715

If experimental low-lying Roper resonance results from

strong rescattering between coupled meson-baryon channels ...

N(1440) BREIT-WIGNER MASS N(1440) BREIT-WIGNER WIDTH	1410 to 1450 (≈ 1430) MeV 250 to 450 (≈ 350) MeV	
Νπ	55 - 75%	
Νη	< 1%	
Νππ	25-50%	
$\Delta(1232)\pi$	20-30%	
$\Delta(1232)\pi$, $P-\nu$	vave 13 - 27%	
Νσ	11 – 23%	

If this is the case, the prospects of rigorous lattice treatment will be challenging:

- coupled channel scattering (doable if both hadrons HH are stable)
- three-body Nππ decay: relation of E and scattering matrix under development [Sharpe, Hansen, Briceno, Rusetsky, Doring, Mai,.] scattering matrix has never been extracted within QCD

Conclusions

H₁H₂ scattering where one or both carry spin:

- a number of simulations at L=0; only few for L>0
- generalized Luscher's relation between E and S exists

(1) $H_1(p)H_2(-p)$ operators constructed for scattering of particles with spin

- Consistent results found in three methods: PV, PN, VN, NN
- \diamond <u>Projection operators</u> O_n: gives little guidance on underlying quantum numbers
- \diamond <u>Partial-wave operators</u>: provides linear combinations O_n to enhance coupling to (J, S, L)

$$O \to E_n \to \delta, S$$

 \Rightarrow <u>Helicity operators</u>: provides linear combinations O_n to enhance coupling to (J, P, λ1, λ2)

(2) simulation of $N\pi$ scattering in p-wave

J^P=3/2⁺, I=3/2: Δ(1232) resonance : "vanilla" baryon resonance confirmed by LQCD

J^P=1/2⁺, I=1/2: N(1440) resonance (Roper)

- meson-baryon eigenstates (N π and N $\pi\pi$) are identified for the first time in this channel
- the scenario of the low-lying Roper that is mainly elastic in $N\pi$ is not supported by lattice data
- coupling of N π with other channels (N σ or N $\pi\pi$) seems important to render low-lying Roper in exp
- this step was only the first on in more to follow