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Review:

Lellouch-Lüscher via pole matching

Alternative two-particle derivation (Kim, Sachrajda, Sharpe)

A real, smooth, three-particle quantity…
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Three-particle quantization condition

Road to physics:
I.  Use q.c. + energy levels to determine 
II. Use known integral equation to relate           to   

Kdf,3

Kdf,3 M3
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Model- & EFT-independent relation between  
finite-volume energies and relativistic two-and-three particle scattering

Current status
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Smooth cutoff function
and       depend on a smooth cutoff function

To see why, consider one of the contributions to CL…

CL(E, ~P ) � K2

~k

How do we define this on-shell cut?

E⇤2
2,k = (E � !k)

2 � (~P � ~k)2
Energy of top two particles is:

��� ��� ��� ��� ��� ���
-�

�

��

��

k/mE
⇤2 2
,k
/m

2 on-shell

sub-threshold

t-channel cut

Kdf,3 F3



Resonant subprocesses: Briceño, MTH and Sharpe, work in progress
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To keep on-shell states and avoid 
spurious off-shell contributions… 

Cuts are defined with

Kdf,3 F3

We choose to sum subdiagrams into       K2

On-shell        gives important volume effectsK2
No important effects far below threshold

Must connect the two regions

Is this really necessary?



Important limitation
Current formalism requires no poles in       … Derivation assumes
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Given that we are seeking an EFT-independent mapping…  
Is it intuitive that        poles need special treatment?
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Given that we are seeking an EFT-independent mapping…  
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Need to bridge the gap

Update
We now of a complete derivation of 

formalism that includes K2 poles.  
Briceño, MTH, Sharpe (underway)



The most technical detail of all…
Far below threshold there is no ambiguity about which  

two-to-two scattering quantity appears in CL 
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Far below threshold there is no ambiguity about which  

two-to-two scattering quantity appears in CL 

CL(E, ~P ) �

~k

= M2
Large k, far below threshold

Reason: 1

L3

X

~k

1

(2!k)
2
(Esub � 2!k)

=

Z

~k

1

(2!k)
2
(Esub � 2!k)

= Analytic Continuation

Z

~k

1

(2!k)
2
(E � 2!k + i✏)

�

It is important because our formalism breaks down when there 
are poles in this definition of       .K2

Why are you telling me this?

This means that our subthreshold         is non-standard
K�1

2 / p⇤ cot �(p⇤) + [1�H(

~k)](p⇤)
K matrix above threshold, smooth at threshold, interpolates to the amplitude below threshold

K2



Testing the formalism (Weak interactions)
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Expansion is well known for small a/L

E = 3m+
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We can reproduce this by expanding our quantization condition
First we recast the expression

Then we show that the solution comes from tuning E…
H = K̃�1

2 + F̃ + G̃To enhance an eigenvalue of
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Testing the formalism (Weak interactions)

MTH and Sharpe (2017)

We reproduce known results through 1/L5 and derive a relation at 1/L6

Note: Relativistic effects enter at 1/L6, same order as three-to-three
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Testing the formalism (Weak interactions)

MTH and Sharpe (2017)

We reproduce known results through 1/L5 and derive a relation at 1/L6

Note: Relativistic effects enter at 1/L6, same order as three-to-three
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At 1/L6 a lot happens…

det[F3(E,L)�1 +Kdf,3(E)] = 0

Every entry of the matrices contributes

The infinite set of terms exactly generates the integral equation that 
converts              toKdf,3 M3

We checked this in          through

MTH and Sharpe (2016), Sharpe (2017)

��4 O(�4)
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geometric constant from 
Effimov wavefunction

c = �96.351 · · ·

normalization correction factor 
(close to one)
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Testing the formalism (Strong interactions)

We aim to reproduce the exponent, leading power and overall constant 
using our relativistic formalism
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Reproducing the result…
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3. Evaluate the sum-integral difference with Poisson summation

MTH and Sharpe (2017)



Reproducing the result (more details)…
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Expansion and analysis of all terms shows that the same relation holds for the 
full (unsymmetrized) three-to-three scattering amplitude 
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Substituting pole ansatz and solving gives the claimed result

finite-volume pole infinite-volume pole
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2. Derive the functional forms of the infinite-volume quantities
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3. Evaluate the sum-integral difference with Poisson summation
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subthreshold, 
  

leading order in  
binding momentum

2. Derive the functional forms of the infinite-volume quantities
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Reproducing the result (more details)…
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3. Evaluate the sum-integral difference with Poisson summation
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Reproducing the result (more details)…
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Other methods…

A. Rusetsky, H.W. Hammer, J.-Y. Pang: 
Non-relativistic 
Based in a specific EFT, focuses on extracting LECs, 
Simpler derivation and formulae, can handle K-matrix poles 
Argued to be “diagramatically equivalent” 
No t-channel cut, integrals go infinitely far below threshold

M. Mai and M. Döring 
Relativistic 
Built on unitary constrains, replace imaginary cuts with volume cuts 
Cannot see the dropping of  
Connection to our approach is not yet well understood

O(e�mL)

See also Polejaeva, Rusetksy (2012) and Briceño, Davoudi (2013)



Usability?
“Despite this success, the quantization condition in these papers is not yet given in a 

form suitable for the analysis of the real lattice data”
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We were motivated to challenge this claim… 
We find that the “degree of usability” is comparable between the two 

approaches, provided one applies similar approximations.
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Straightforward to vary a and to study large volumes

Threshold expansion 
requires very large L

getting better and better

repulsive works as well

But, to avoid poles in        , we must requireK2 a < 1/m
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Significant finite-volume effects for realistic volumes
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This only works below threshold… Relation above threshold crucially needed
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Not a fit! 
Analytic prediction based on mapping Efimov 

wavefunction to relativistic amplitude
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Still lots to do
Finish result with intermediate two-
particle resonances
Understand unphysical solutions
Extend to non-identical, non-degenerate, 
multiple channels, spin
Study subduction to finite-volume irreps

Understand rigorous parametrizations for 
the infinite-volume observables
Convince practitioners that the formalism 
is mature
Reliably measure finite-volume spectra
Extract three-particle scattering from 
LQCD



Big picture: making progress, but not quite there yet
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Thanks!

Still lots to do
Finish result with intermediate two-
particle resonances
Understand unphysical solutions
Extend to non-identical, non-degenerate, 
multiple channels, spin
Study subduction to finite-volume irreps

Understand rigorous parametrizations for 
the infinite-volume observables
Convince practitioners that the formalism 
is mature
Reliably measure finite-volume spectra
Extract three-particle scattering from 
LQCD



That’s all folks!

Thanks to all the participants!


