

Three-particle scattering from numerical lattice QCD

Scattering from the lattice: applications to phenomenology and beyond

Maxwell T. Hansen

May 14-18th, 2018

M Road to physics:

- I. Use q.c. + energy levels to determine $\mathcal{K}_{df,3}$
- II. Use known integral equation to relate $\mathcal{K}_{df,3}$ to \mathcal{M}_3

Outline

Warm up and definitions

- Basic set-up
- Finite-volume correlator
- Three non-interacting particles

Two particles in a box

Alternative derivation Truncation and application Relating matrix elements

Three particles in a box

3-to-3 scattering(Sketch of) derivationAn unexpected infinite-volume quantityRelating energies to scattering

] Testing the result

- - Know issues
 - Large-volume expansion
 - **]** Effimov state in a box

Other methods

Numerical explorations

- Truncation at low energies
- Toy solutions for various systems
- Unphysical solutions

Looking forward

Current status

Model- & EFT-independent relation between

finite-volume energies and relativistic two-and-three particle scattering

(a),(b) *MTH and Sharpe (2015),(2016)*(c) *Briceño, MTH, Sharpe (2017)*

Smooth cutoff function

 $\mathcal{K}_{\mathrm{df},3}$ and F_3 depend on a smooth cutoff function

To see why, consider one of the contributions to C_L ...

Smooth cutoff function

 $\mathcal{K}_{\mathrm{df},3}$ and F_3 depend on a smooth cutoff function

To see why, consider one of the contributions to C_L ...

Important limitation

Current formalism requires no poles in \mathcal{K}_2 ... Derivation assumes

Given that we are seeking an EFT-independent mapping... Is it intuitive that \mathcal{K}_2 poles need special treatment?

Important limitation

 $E_0(L)$

Current formalism requires no poles in \mathcal{K}_2 ... Derivation assumes

Given that we are seeking an EFT-independent mapping... Is it intuitive that \mathcal{K}_2 poles need special treatment?

The most technical detail of all...

Far below threshold there is no ambiguity about which two-to-two scattering quantity appears in C_L

The most technical detail of all...

Far below threshold there is no ambiguity about which two-to-two scattering quantity appears in C_L

$$C_L(E,\vec{P}) \supset \underbrace{\bigcap_{k=1}^{n-1} \bigcap_{k=1}^{n-1} \bigcap_{k=1}^{n-1} \underbrace{\text{Large } k, \text{ far below threshold}}_{k=1} O = \mathcal{M}_2$$

Reason:
$$\frac{1}{L^3} \sum_{\vec{k}} \frac{1}{(2\omega_k)^2 (E_{\text{sub}} - 2\omega_k)} = \int_{\vec{k}} \frac{1}{(2\omega_k)^2 (E_{\text{sub}} - 2\omega_k)} = \text{Analytic Continuation} \left[\int_{\vec{k}} \frac{1}{(2\omega_k)^2 (E - 2\omega_k + i\epsilon)} \right]$$

This means that our subthreshold \mathcal{K}_2 is non-standard $\mathcal{K}_2^{-1} \propto p^* \cot \delta(p^*) + [1 - H(\vec{k})]\kappa(p^*)$

K matrix above threshold, smooth at threshold, interpolates to the amplitude below threshold

 \mathbf{M} Expansion is well known for small a/L

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + c_5 \frac{a^2}{L^2} \right) + \mathcal{O}(1/L^6)$$

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

 \fbox Expansion is well known for small a/L

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + c_5 \frac{a^2}{L^2} \right) + \mathcal{O}(1/L^6)$$

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

We can reproduce this by expanding our quantization condition

 \mathbf{M} Expansion is well known for small a/L

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + c_5 \frac{a^2}{L^2} \right) + \mathcal{O}(1/L^6)$$

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

We can reproduce this by expanding our quantization condition First we recast the expression

$$\det \left[F_3(E,L)^{-1} + \mathcal{K}_{df,3}(E) \right] = 0$$

$$F_{3;00}(E,L) = \frac{1}{L^3} \left[\frac{\tilde{F}}{3} - \tilde{F} \mathcal{H}^{-1} \tilde{F} \right]_{00} \qquad \mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$$

 \fbox Expansion is well known for small a/L

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + c_5 \frac{a^2}{L^2} \right) + \mathcal{O}(1/L^6)$$

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

We can reproduce this by expanding our quantization condition First we recast the expression

$$\det[F_3(E,L)^{-1} + \mathcal{K}_{df,3}(E)] = 0$$

$$F_{3;00}(E,L) = \frac{1}{L^3} \left[\frac{\tilde{F}}{3} - \tilde{F}\mathcal{H}^{-1}\tilde{F}\right]_{00} \qquad \mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$$

For the show that the solution comes from tuning E... To enhance an eigenvalue of $\mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$

 \mathbf{M} Expansion is well known for small a/L

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + c_5 \frac{a^2}{L^2} \right) + \mathcal{O}(1/L^6)$$

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

We can reproduce this by expanding our quantization condition First we recast the expression

$$\det[F_3(E,L)^{-1} + \mathcal{K}_{df,3}(E)] = 0$$

$$F_{3;00}(E,L) = \frac{1}{L^3} \left[\frac{\tilde{F}}{3} - \tilde{F}\mathcal{H}^{-1}\tilde{F} \right]_{00} \qquad \mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$$

- For the show that the solution comes from tuning E... To enhance an eigenvalue of $\mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$
- Final Follows From The leading order follows from

$$\mathcal{H}_{00} = -\frac{1}{64\pi m^2 a} + \frac{1}{16L^3 m^3 \Delta E} + \frac{1}{8m^3 L^3 \Delta E} + \cdots$$

We reproduce known results through I/L^5 and derive a relation at I/L^6 Note: Relativistic effects enter at I/L^6 , same order as three-to-three

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + \cdots \right) - \frac{\mathcal{M}_{\text{thr}}}{48m^3L^6} + \cdots$$

MTH and Sharpe (2017)

 \mathcal{M} Terms through I/L^5 are from tuning the eigenvalue of $\mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$

We reproduce known results through I/L^5 and derive a relation at I/L^6 Note: Relativistic effects enter at I/L^6 , same order as three-to-three

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + \cdots \right) - \frac{\mathcal{M}_{\text{thr}}}{48m^3L^6} + \cdots$$

MTH and Sharpe (2017)

 \mathcal{M} Terms through I/L^5 are from tuning the eigenvalue of $\mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$

 \mathbf{M} At $1/L^6$ a lot happens...

$$\det[F_3(E,L)^{-1} + \mathcal{K}_{df,3}(E)] = 0$$

- Every entry of the matrices contributes
- For the infinite set of terms exactly generates the integral equation that converts $\mathcal{K}_{df,3}$ to \mathcal{M}_3

We reproduce known results through I/L^5 and derive a relation at I/L^6 Note: Relativistic effects enter at I/L^6 , same order as three-to-three

$$E = 3m + \frac{12\pi a}{mL^3} \left(1 + c_4 \frac{a}{L} + \cdots \right) - \frac{\mathcal{M}_{\text{thr}}}{48m^3L^6} + \cdots$$

MTH and Sharpe (2017)

 \mathcal{M} Terms through I/L^5 are from tuning the eigenvalue of $\mathcal{H} = \tilde{\mathcal{K}}_2^{-1} + \tilde{F} + \tilde{G}$

 \mathbf{M} At $1/L^6$ a lot happens...

$$\det[F_3(E,L)^{-1} + \mathcal{K}_{df,3}(E)] = 0$$

- Every entry of the matrices contributes
- For the infinite set of terms exactly generates the integral equation that converts $\mathcal{K}_{df,3}$ to \mathcal{M}_3

 $\widecheck{\mathcal{M}}$ We checked this in $\lambda\phi^4$ through $\mathcal{O}(\lambda^4)$

MTH and Sharpe (2016), Sharpe (2017)

Meißner, Rìos and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum κ^2

The infinite-volume boundstate energy, $E_B \equiv 3m$ – \mathcal{M} is shifted in finite volume by an amount

$$c = -96.351\cdots$$

ant from nction

$$\Delta E(L) = c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots \begin{cases} c = -96.35 \\ \text{geometric constants} \\ \text{Effimov wavefull of close to one} \\ \text{Assumes two-body potential, unitary limit, P=0, s-wave only} \end{cases}$$

 κ^2 The infinite-volume boundstate energy, $E_B \equiv 3m - m$ \mathcal{M} is shifted in finite volume by an amount $\Delta E(L) = c |A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots \begin{cases} c = -96.351 \cdots \\ \text{geometric constant from} \\ \text{Effimov wavefunction} \end{cases}$ (close to one) Assumes two-body potential, unitary limit, P=0, s-wave only Our formalism gives a general relation between scattering amplitudes and energy levels. So we substitute... $\mathcal{M}_3 \sim -\frac{\Gamma \Gamma}{E^2 - E_P^2} \qquad \qquad \mathcal{M}_2 = -\frac{16\pi E_2^*}{ip^*}$ and study the lowest three-particle finite-volume level

Meißner, Rìos and Rusetsky, *Phys. Rev. Lett.* 114, 091602 (2015) + erratum

The infinite-volume boundstate energy, $E_B \equiv 3m - \frac{\kappa^2}{-1}$ \mathcal{m} is shifted in finite volume by an amount $\Delta E(L) = c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots \begin{cases} c = -96.351 \cdots \\ \text{geometric constant from} \\ \text{Effimov wavefunction} \end{cases}$ (close to one) Assumes two-body potential, unitary limit, P=0, s-wave only Our formalism gives a general relation between scattering amplitudes and energy levels. So we substitute... $\mathcal{M}_3 \sim -\frac{\Gamma \Gamma}{E^2 - E_{\mathcal{D}}^2} \qquad \qquad \mathcal{M}_2 = -\frac{16\pi E_2^*}{ip^*}$ and study the lowest three-particle finite-volume level

Meißner, Rìos and Rusetsky, *Phys. Rev. Lett.* 114, 091602 (2015) + erratum

We aim to reproduce the exponent, leading power and overall constant using our relativistic formalism

Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$\Delta E(L) = -\frac{1}{2E_B} \left[\frac{1}{L^3} \sum_{\vec{k}} - \int_{\vec{k}} \right] \frac{\overline{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2\omega_k \mathcal{M}_2(k)} \qquad \begin{array}{c} \text{usymmetrized} \\ \text{residue factor} \\ \vec{k} \end{array}$$

2. Derive the functional forms of the infinite-volume quantities

$$\Gamma^{(u)}(k) = \frac{3^{3/8} \pi^{1/4}}{4} A \sqrt{-c} \mathcal{M}_2(k) \qquad \mathcal{M}_2(k) = \frac{32\pi m}{\kappa} \left[1 + \frac{3k^2}{4\kappa^2} \right]^{-1/2}$$

follows from matching to Effimov wavefunction

unitary amplitude with spectator "stealing" some momentum

3. Evaluate the sum-integral difference with Poisson summation

$$\Delta E(L) = c|A|^2 \frac{3^{3/4} \pi^{3/2}}{3\kappa} 6 \int_{\vec{k}} e^{iL\hat{x}\cdot\vec{k}} \frac{1}{2\omega_k} \left[1 + \frac{3k^2}{4\kappa^2}\right]^{-1/2}$$
$$= c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots$$

MTH and Sharpe (2017)

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$\Delta E(L) = -\frac{1}{2E_B} \left[\frac{1}{L^3} \sum_{\vec{k}} -\int_{\vec{k}} \right] \frac{\overline{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2\omega_k \mathcal{M}_2(k)}$$

We use the second form of the finite-volume correlator

MTH and Sharpe (2017)

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$\Delta E(L) = -\frac{1}{2E_B} \left[\frac{1}{L^3} \sum_{\vec{k}} -\int_{\vec{k}} \right] \frac{\overline{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2\omega_k \mathcal{M}_2(k)}$$

We use the second form of the finite-volume correlator

$$\mathcal{M}_{3,L} = \mathcal{S} \left[\mathcal{D}_L^{(u,u)} + \mathcal{L}_L^{(u)} \mathcal{K}_{\mathrm{df},3} \frac{1}{1 + F_3 \mathcal{K}_{\mathrm{df},3}} \mathcal{R}_L^{(u)} \right]$$

Expansion and analysis of all terms shows that the same relation holds for the full (unsymmetrized) three-to-three scattering amplitude

$$\mathcal{M}_{3,L}^{(u,u)} = \mathcal{M}_{3}^{(u,u)} + \left[\frac{1}{L^3}\sum_{\vec{k}} -\int_{\vec{k}}\right]\mathcal{M}_{3}^{(u,u)} \frac{1}{2\omega_k \mathcal{M}_2(\vec{k})}\mathcal{M}_{3,L}^{(u,u)}$$

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$\Delta E(L) = -\frac{1}{2E_B} \left[\frac{1}{L^3} \sum_{\vec{k}} -\int_{\vec{k}} \right] \frac{\overline{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2\omega_k \mathcal{M}_2(k)}$$

We use the second form of the finite-volume correlator

$$\mathcal{M}_{3,L} = \mathcal{S}\left[\mathcal{D}_L^{(u,u)} + \mathcal{L}_L^{(u)}\mathcal{K}_{\mathrm{df},3}\frac{1}{1 + F_3\mathcal{K}_{\mathrm{df},3}}\mathcal{R}_L^{(u)}\right]$$

Expansion and analysis of all terms shows that the same relation holds for the full (unsymmetrized) three-to-three scattering amplitude

$$\mathcal{M}_{3,L}^{(u,u)} = \mathcal{M}_{3}^{(u,u)} + \left[\frac{1}{L^3}\sum_{\vec{k}} - \int_{\vec{k}}\right] \mathcal{M}_{3}^{(u,u)} \frac{1}{2\omega_k \mathcal{M}_2(\vec{k})} \mathcal{M}_{3,L}^{(u,u)}$$

Substituting pole ansatz and solving gives the claimed result

$$-\frac{1}{E^{2} - [E_{B} + \Delta E(L)]^{2}} = -\frac{1}{E^{2} - E_{B}^{2}} + \left[\frac{1}{L^{3}}\sum_{\vec{k}} - \int_{\vec{k}}\right] \frac{1}{E^{2} - E_{B}^{2}} \frac{\overline{\Gamma}^{(u)}(k)\Gamma^{(u)}(k)}{2\omega_{k}\mathcal{M}_{2}(\vec{k})} \frac{1}{E^{2} - [E_{B} + \Delta E(L)]^{2}}$$

finite-volume pole infinite-volume pole

1. Show that the relativistic quantization predicts (at leading order in I/L)

usymmetrized residue factor

2. Derive the functional forms of the infinite-volume quantities

$$\Gamma^{(u)}(k) = \frac{3^{3/8} \pi^{1/4}}{4} A \sqrt{-c} \mathcal{M}_2(k) \qquad \mathcal{M}_2(k) = \frac{32\pi m}{\kappa} \left[1 + \frac{3k^2}{4\kappa^2} \right]^{-1/2}$$

follows from matching to Effimov wavefunction

unitary amplitude with spectator "stealing" some momentum

3. Evaluate the sum-integral difference with Poisson summation

$$\Delta E(L) = c|A|^2 \frac{3^{3/4} \pi^{3/2}}{3\kappa} 6 \int_{\vec{k}} e^{iL\hat{x}\cdot\vec{k}} \frac{1}{2\omega_k} \left[1 + \frac{3k^2}{4\kappa^2}\right]^{-1/2}$$
$$= c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots$$

MTH and Sharpe (2017)

2. Derive the functional forms of the infinite-volume quantities

$$\mathcal{M}_{2}(k) = -\frac{16\pi E_{2}^{*}}{ip^{*}} \xrightarrow[\text{binding order in}]{\text{binding momentum}} \mathcal{M}_{2}(k) = \frac{32\pi m}{\kappa} \left[1 + \frac{3k^{2}}{4\kappa^{2}}\right]^{-1/2}$$

To derive the residue factor we match to the non-relativistic wavefunction

$$\left[-\frac{1}{2m}\sum_{i}\frac{\partial^{2}}{\partial\mathbf{r}_{i}^{2}}+\sum_{ij}V(\mathbf{r}_{i}-\mathbf{r}_{j})\right]\psi(\mathbf{r}_{1},\mathbf{r}_{2})=-\frac{\kappa^{2}}{m}\psi(\mathbf{r}_{1},\mathbf{r}_{2})$$

this can be re-expressed using the Faddeev equation

$$\psi = \phi_1 + \phi_2 + \phi_3 \qquad \left[-\frac{1}{2m} \sum_i \frac{\partial^2}{\partial \mathbf{r}_i^2} + \frac{\kappa^2}{m} \right] \phi_3(\mathbf{r}_1, \mathbf{r}_2) = V(\mathbf{r}_1 - \mathbf{r}_2) \,\psi(\mathbf{r}_1, \mathbf{r}_2)$$

We have found that the unsymmetrized residue factor is given by

$$\Gamma^{(u)}(k) = \lim_{\text{on shell}} 4\sqrt{3}m^2 \left(-\frac{\kappa^2}{m} - H_0\right)\tilde{\phi}_3$$

Substituting the known wave function and expanding about the leading singularity, we find

$$\Gamma^{(u)}(k) = \frac{3^{3/8} \pi^{1/4}}{4} A \sqrt{-c} \mathcal{M}_2(k)$$

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$\Delta E(L) = -\frac{1}{2E_B} \left[\frac{1}{L^3} \sum_{\vec{k}} -\int_{\vec{k}} \right] \frac{\overline{\Gamma}^{(u)}(k) \Gamma^{(u)}(\vec{k})}{2\omega_k \mathcal{M}_2(k)} \qquad \begin{array}{c} \text{usymmetrized} \\ \text{residue factor} \\ \\ \hline{\vec{k}} \end{array}$$

2. Derive the functional forms of the infinite-volume quantities

$$\Gamma^{(u)}(k) = \frac{3^{3/8} \pi^{1/4}}{4} A \sqrt{-c} \mathcal{M}_2(k) \qquad \mathcal{M}_2(k) = \frac{32\pi m}{\kappa} \left[1 + \frac{3k^2}{4\kappa^2} \right]^{-1/2}$$
follows from matching to
Effimov wavefunction
unitary amplitude with spectator
"stealing" some momentum

3. Evaluate the sum-integral difference with Poisson summation

$$\begin{split} \Delta E(L) &= c|A|^2 \frac{3^{3/4} \pi^{3/2}}{3\kappa} 6 \int_{\vec{k}} e^{iL\hat{x}\cdot\vec{k}} \frac{1}{2\omega_k} \left[1 + \frac{3k^2}{4\kappa^2} \right]^{-1/2} \\ &= c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots \end{split}$$

MTH and Sharpe (2017)

1. Show that the relativistic quantization predicts (at leading order in I/L)

usymmetrized residue factor

2. Derive the functional forms of the infinite-volume quantities

$$\Gamma^{(u)}(k) = \frac{3^{3/8}\pi^{1/4}}{4} A \sqrt{-c} \mathcal{M}_2(k) \qquad \mathcal{M}_2(k) = \frac{32\pi m}{\kappa} \left[1 + \frac{3k^2}{4\kappa^2}\right]^{-1/2}$$
follows from matching to
Effimov wavefunction unitary amplitude with spectator
"stealing" some momentum
3. Evaluate the sum-integral difference with Poisson summation
singularity from two-to-two amplitude

$$\Delta E(L) = c|A|^2 \frac{3^{3/4}\pi^{3/2}}{3\kappa} 6 \int_{\vec{k}} e^{iL\hat{x}\cdot\vec{k}} \frac{1}{2\omega_k} \left[1 + \frac{3k^2}{4\kappa^2}\right]^{-1/2}$$

$$= c|A|^2 \frac{\kappa^2}{m} \frac{1}{(\kappa L)^{3/2}} e^{-2\kappa L/\sqrt{3}} + \cdots$$
MTH and Sharpe (2017)

Outline

Warm up and definitions

Basic set-up

Finite-volume correlator

Three non-interacting particles

Two particles in a box

Alternative derivation Truncation and application Relating matrix elements

Three particles in a box

3-to-3 scattering (Sketch of) derivation An unexpected infinite-volume quantity Relating energies to scattering

Testing the result

Know issues

- Large-volume expansion
- Effimov state in a box

Other methods

Numerical explorations

- Truncation at low energies
- Toy solutions for various systems
- Unphysical solutions

Looking forward

Other methods...

🗹 A. Rusetsky, H.W. Hammer, J.-Y. Pang:

- Mon-relativistic
- **M** Based in a specific EFT, focuses on extracting LECs,
- Simpler derivation and formulae, can handle K-matrix poles
- Margued to be "diagramatically equivalent"
- Mo t-channel cut, integrals go infinitely far below threshold

M. Mai and M. Döring

🗹 Relativistic

Built on unitary constrains, replace imaginary cuts with volume cuts

- \mathbf{M} Cannot see the dropping of $\mathcal{O}(e^{-mL})$
- Connection to our approach is not yet well understood

See also Polejaeva, Rusetksy (2012) and Briceño, Davoudi (2013)

Usability?

"Despite this success, the quantization condition in these papers is not yet given in a form suitable for the analysis of the real lattice data"

Hammer, Pang and Rusetsky (2017)

Numerics (keeping only s-wave and $\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3) \approx \mathcal{K}_{df,3}^{iso}(E^*)$)

 $1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}}(E^*) = -F_3^{\mathrm{iso}}[E,\vec{P},L,\mathcal{M}_2^s] \qquad \mathcal{M}_3(E^*,\Omega_3',\Omega_3) = \mathcal{S}\left[\mathcal{D} + \mathcal{L}\frac{1}{1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}} + F_{3,\infty}^{\mathrm{iso}}}\mathcal{R}\right]$

For the numerical approach we restrict attention to... $p^* \cot \delta_0(p^*) = -\frac{1}{a}$, $\vec{P} = 0$

Briceño, Hansen and Sharpe (2018)

$\mathcal{K}^{iso}_{df,3}(E) = 0$ solutions

Provides a useful benchmark: Deviations measure three-particle physics

Meaning for three-to-three scattering is clear

$$i\mathcal{M}_3 = \mathcal{S}\left[\underbrace{i\mathcal{M}_2}_{i\mathcal{M}_2} + \underbrace{i\mathcal{M}_2}_{i\mathcal{M}_2} + \cdots\right]$$

Provides a useful benchmark: Deviations measure three-particle physics

Meaning for three-to-three scattering is clear

Provides a useful benchmark: Deviations measure three-particle physics

Meaning for three-to-three scattering is clear

Provides a useful benchmark: Deviations measure three-particle physics

Meaning for three-to-three scattering is clear

Straightforward to vary a and to study large volumes

But, to avoid poles in \mathcal{K}_2 , we must require $\ a < 1/m$

Non-zero $\mathcal{K}_{df,3}^{iso}(E)$: Toy resonance

Here we consider a fun example for non-zero $\mathcal{K}_{df,3}^{iso}$ a = -10 $\mathcal{K}_{df,3}^{iso}(E) = -\frac{c \times 10^3}{E^2 - M_R^2}$

For small c we expect a narrow avoided level crossing, as c increases the gap grows

Further investigation is needed to see if this gives a physical resonance description

Unphysical solutions

Very large values of $\mathcal{K}_{df,3}^{iso}$ can lead to unphysical solutions

Unphysical input? Enhanced $O(e^{-mL})$ effects? Under investigation...

The parameters $a = -10^4$, $\mathcal{K}^{iso}_{df,3}(E) = 2500$ lead to a shallow bound state

 $\kappa pprox 0.1m$ where $E_B = 3m - \kappa^2/m$

The parameters $a=-10^4$, $\mathcal{K}^{\mathrm{iso}}_{\mathrm{df},3}(E)=2500\,$ lead to a shallow bound state

 $\kappa pprox 0.1m$ where $E_B = 3m - \kappa^2/m$

$$E_B(L) = 3m - \frac{\kappa^2}{m} - (98.35\cdots)|A|^2 \frac{\kappa^2}{m} \frac{e^{-2\kappa L/\sqrt{3}}}{(\kappa L)^{3/2}} \left[1 + \mathcal{O}\left(\frac{1}{\kappa L}, \frac{\kappa^2}{m^2}, e^{-\alpha\kappa L}\right)\right]$$

The parameters $a=-10^4$, $\mathcal{K}^{\mathrm{iso}}_{\mathrm{df},3}(E)=2500\,$ lead to a shallow bound state

 $\kappa \approx 0.1m$ where $E_B = 3m - \kappa^2/m$

Finite-volume behavior of this state has a known asymptotic form Meißner, Rios, Rusetsky (2015)

$$E_B(L) = 3m - \frac{\kappa^2}{m} - (98.35\cdots)|A|^2 \frac{\kappa^2}{m} \frac{e^{-2\kappa L/\sqrt{3}}}{(\kappa L)^{3/2}} \left[1 + \mathcal{O}\left(\frac{1}{\kappa L}, \frac{\kappa^2}{m^2}, e^{-\alpha\kappa L}\right)\right]$$

This describes the bound state for $\kappa L \approx 0.1 mL \gg 1$

The parameters $a=-10^4$, $\mathcal{K}^{\mathrm{iso}}_{\mathrm{df},3}(E)=2500\,$ lead to a shallow bound state

$$\kappa \approx 0.1m$$
 where $E_B = 3m - \kappa^2/m$

$$E_B(L) = 3m - \frac{\kappa^2}{m} - (98.35\cdots)|A|^2 \frac{\kappa^2}{m} \frac{e^{-2\kappa L/\sqrt{3}}}{(\kappa L)^{3/2}} \left[1 + \mathcal{O}\left(\frac{1}{\kappa L}, \frac{\kappa^2}{m^2}, e^{-\alpha\kappa L}\right)\right]$$

The parameters $a=-10^4$, $\mathcal{K}^{\mathrm{iso}}_{\mathrm{df},3}(E)=2500\,$ lead to a shallow bound state

$$\kappa \approx 0.1m$$
 where $E_B = 3m - \kappa^2/m$

$$E_B(L) = 3m - \frac{\kappa^2}{m} - (98.35\cdots)|A|^2 \frac{\kappa^2}{m} \frac{e^{-2\kappa L/\sqrt{3}}}{(\kappa L)^{3/2}} \left[1 + \mathcal{O}\left(\frac{1}{\kappa L}, \frac{\kappa^2}{m^2}, e^{-\alpha\kappa L}\right)\right]$$

The parameters $a=-10^4$, $\mathcal{K}^{\mathrm{iso}}_{\mathrm{df},3}(E)=2500\,$ lead to a shallow bound state

$$\kappa \approx 0.1m$$
 where $E_B = 3m - \kappa^2/m$

$$E_B(L) = 3m - \frac{\kappa^2}{m} - (98.35\cdots)|A|^2 \frac{\kappa^2}{m} \frac{e^{-2\kappa L/\sqrt{3}}}{(\kappa L)^{3/2}} \left[1 + \mathcal{O}\left(\frac{1}{\kappa L}, \frac{\kappa^2}{m^2}, e^{-\alpha\kappa L}\right)\right]$$

This only works below threshold... Relation above threshold crucially needed

Outline

Warm up and definitions

- Basic set-up
- Finite-volume correlator
- Three non-interacting particles

Two particles in a box

Alternative derivation Truncation and application Relating matrix elements

Three particles in a box

3-to-3 scattering(Sketch of) derivationAn unexpected infinite-volume quantityRelating energies to scattering

∫ Te ☑

Testing the result

- Know issues
 - Large-volume expansion
 - Effimov state in a box

Other methods

Mumerical explorations

Truncation at low energies Toy solutions for various systems Unphysical solutions

Still lots to do

- Finish result with intermediate twoparticle resonances
- Understand unphysical solutions
- Extend to non-identical, non-degenerate, multiple channels, spin

Study subduction to finite-volume irreps

- Understand rigorous parametrizations for the infinite-volume observables
- Convince practitioners that the formalism is mature
- Reliably measure finite-volume spectra
- Extract three-particle scattering from LQCD

Still lots to do

multiple channels, spin

Study subduction to finite-volume irreps

- Finish result with intermediate two-particle resonances
 Understand unphysical solutions
 Extend to non-identical, non-degenerate,
 Understand rigorous parametrizations for the infinite-volume observables
 Convince practitioners that the formalism is mature
 - Reliably measure finite-volume spectra
 - Extract three-particle scattering from LQCD

Big picture: making progress, but not quite there yet

That's all folks!

Thanks to all the participants!