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[ A real, smooth, three-particle quantity...

[ Three-particle quantization condition
CuE. P =+++---

e e . S 1
— (C+ — A'F A
14 Kas 33

[ Road to physics:
. Use q.c. + energy levels to determine Kqs 3
Il. Use known integral equation to relate [Cq¢ 3 to M3
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gWarm up and definitions

Basic set-up
[ Finite-volume correlator
[A Three non-interacting particles

[F] Two particles in a box
Alternative derivation

[ Truncation and application
[ Relating matrix elements

gThree particles in a box

3-to-3 scattering

[ (Sketch of) derivation
An unexpected infinite-volume quantity
Relating energies to scattering

[[] Testing the result

[J Know issues
[J Large-volume expansion
[J Effimov state in a box

[] Other methods

[ (] Numerical explorations

[J Truncation at low energies
[J Toy solutions for various systems
[J Unphysical solutions

[] Looking forward



Current status

Model- & EFT-independent relation between
finite-volume energies and relativistic two-and-three particle scattering

(a),(b) MTH and Sharpe (2015),(2016)
(c) Briceiio, MTH, Sharpe (2017)



Smooth cutoff function

Kat,3 and F3 depend on a smooth cutoff function
To see why, consider one of the contributions to C;...

- How do we define this on-shell cut?

Energy of top two particles is:
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Smooth cutoff function
/Cdf,g and I3 depend on a smooth cutoff function

Cr(

To see why, consider one of the contributions to C;...

— How do we define this on-shell cut?

Energy of top two particles is:

Eaﬁ D) ‘—@‘ E;?k:(E_wk)2_(p’_E)2
| ;

To keep on-shell states and avoid 05 10 15 20 2s_80 k/m
spurious off-shell contributions... /o t-channel cut
Cuts are defined with
T e —
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() Is this really necessary? (9

We choose to sum subdiagrams into ICo

—— ——

, On-shell /Co gives important volume effects |
|

[ : /(2 ]82 1.0 m No important effects far below threshold
2,k/ &1 — ——

T ———— e Must connect the two regions



Important limitation

Current formalism requires no poles in K3 ... Derivation assumes
1
5> (OZOE0 - [ CZOE0
g k k

Given that we are seeking an EFT-independent mapping...
Is it intuitive that /U, poles need special treatment?



Important limitation

Current formalism requires no poles in K3 ... Derivation assumes
1
5> (OZOE0 - [ CZEE0
g k k

Given that we are seeking an EFT-independent mapping...
Is it intuitive that /U, poles need special treatment?

Update
We now of a complete derivation of
M, > ES > 2M, ,.mw;) T — T for:ma:lism that includes K; poles.
T —-——— e Briceito, MTH, Sharpe (underway)

Need to bridge the gap \
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The most technical detail of all...

Far below threshold there is no ambiguity about which
two-to-two scattering quantity appears in C;

CL(E,P) D)

Large k, far below threshold > O



The most technical detail of all...

Far below threshold there is no ambiguity about which
two-to-two scattering quantity appears in C;

Large k, far below thres

hold
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ReaSOH. E %: (2wk)2(Esub _ 2wk) — /l;:’ (ka)2(Esub _ 2Wk) = Analytic Continuation l/;;’ (ka)Q(E ~ 2w + ZE)]

This means that our subthreshold ]C2 is non-standard
K3 ' o p*cotd(p*) + [1 — H(k)]x(p*)

K matrix above threshold, smooth at threshold, interpolates to the amplitude below threshold

Why are you telling me this?

It is important because our formalism breaks down when there
are poles in this definition of Ka.




Testing the formalism (Weak interactions)

[¥] Expansion is well known for small a/L
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Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)
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Testing the formalism (Weak interactions)
[¥] Expansion is well known for small a/L

12ma a a? 6

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

M We can reproduce this by expanding our quantization condition
€ First we recast the expression

det[F3(E, L)™' + Kat3(E)] =0

~
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Fs.00(E,L) = 5 H=K,'+F+G

1
L3

00
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¢ Then we show that the solution comes from tuning E...
To enhance an eigenvalue of ‘H = /C2_1 +F+G



Testing the formalism (Weak interactions)
[F] Expansion is well known for small a/L

127ma a a? 6

Huang and Yang (1957); Beane, Detmold, Savage, (2007); Tan(2007)

IZ We can reproduce this by expanding our quantization condition
€ First we recast the expression

det[F3(E, L)™' + Kat3(E)] =0

~

F . -
§~—FH—U?

1
F5.00(E,L) = —

73 H=K,'+F+G

00

o'

¢ Then we show that the solution comes from tuning E...
To enhance an eigenvalue of ‘H = /C2_1 +F+G

¢ The leading order follows from

1 1 1

Hoo = — s Y 163mAE T snPIPAE T




Testing the formalism (Weak interactions)

We reproduce known results through I/L° and derive a relation at I/L®

Note: Relativistic effects enter at [/L%, same order as three-to-three

E =3m -+

127a ( - a N ) Minr
C — [ ] [ ] [ ] —
mL> 4L

MTH and Sharpe (2017)

M Terms through //L° are from tuning the eigenvalue of #H = Ky'+F+G




Testing the formalism (Weak interactions)

We reproduce known results through I/L° and derive a relation at I/L®

Note: Relativistic effects enter at [/L%, same order as three-to-three

WWJ
127a ( N ) Mhy

CA — o« o o _

mL3 ‘L 48m3 LS

MTH and Sharpe (2017)

E =3m -+

(2[ Terms through //L° are from tuning the eigenvalue of #H = Ky'+F+G

[ At /L6 a lot happens...
det[F53(E, L)™' + Kqt3(E)] =0

¢ Every entry of the matrices contributes

€ The infinite set of terms exactly generates the integral equation that
converts 4¢3 to M



Testing the formalism (Weak interactions)

We reproduce known results through I/L° and derive a relation at I/L®

1

Note: Relativistic effects enter at [/L%, same order as three-to-three
w—--—————-—wJ

127a ( - a N ) My
C —_ e o o -
mL3 ‘T A8m3 L6

MTH and Sharpe (2017)

E =3m -+

(2[ Terms through //L° are from tuning the eigenvalue of #H = Ky'+F+G

[ At /L6 a lot happens...
det[F53(E, L)™' + Kqt3(E)] =0

¢ Every entry of the matrices contributes

€ The infinite set of terms exactly generates the integral equation that
converts 4¢3 to M

] We checked this in Ao through O()\4)

MTH and Sharpe (2016), Sharpe (2017)
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Testing the formalism (Strong interactions)
MeiBner, Rios and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum

2
K
The infinite-volume boundstate energy, F'p = 3m
is shifted in finite volume by an amount m
2 —
K21 c=—96.351---
2 —2rL /3
AE(L) — C|A‘ 7 3/2 € " /\/_ + .- geometric constant from
7A m (K ) Effimov wavefunction

(- normalization correction factor
(close to one)

Assumes two-body potential, unitary limit, P=0, s-wave only



Testing the formalism (Strong interactions)
MeiBner, Rios and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum

2
Y
The infinite-volume boundstate energy, F'p = 3m
is shifted in finite volume by an amount m
2 = —96.351 - -
2 K L or c '
AE( ) — C‘A‘ e " /V3 + .- geometric constant from

(‘ (IQL) 3/2
normalization correction factor

(close to one)
Assumes two-body potential, unitary limit, P=0, s-wave only

Effimov wavefunction
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| Our formallsm gives a general relatlon between scatterlng amplltudes and
energy levels. So we substitute... ]l
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| and study the Iowest three -particle fi f‘nlte volume Ievel |




Testing the formalism (Strong interactions)
MeiBner, Rios and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum

2
Y
The infinite-volume boundstate energy, F'p = 3m
is shifted in finite volume by an amount m
2 | = —96.351 - -
ok” L okL/v3 c '
AE( ) — C‘A‘ e " /V3 + .- geometric constant from

(‘ (IQL) 3/2
normalization correction factor

(close to one)
Assumes two-body potential, unitary limit, P=0, s-wave only

Effimov wavefunction

e _— — — —

Our formalism gives a general relatlon between scatterlng amplltudes and
energy levels. So we substitute... |

= |

| I'T 167 E2 |
~ Mo = — 2 *

Ma~ =g E2 ’ ip* |

| and study the Iowest three -particle fi f‘nlte volume Ievel |

We aim to reproduce the exponent, leading power and overall constant
using our relativistic formalism



Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in /L)

AE(L) =

_)
— /k

A

1 Z / T () k)
2Ep | L3 2wk Mafk)
O s-wave scatterlng amplitude -/

2. Derive the functional forms of the infinite-volume quantities

33/8 1/4
4

T (k) =

Effimov wavefunction

AV=cMs(k)  Malk) =

follows from matching to

32mm _1 | 3k?

K 4 K2

3. Evaluate the sum-integral difference with Poisson summation

3

&)

AE(L) = c|A|?

= oA~

3/47.‘.3/26/ AT 1 '1 3 L2
e’ — |
3K 7 2w, 452

2 1
—2xL /3

1 —1/2

&
(,iL)S/z
MTH and Sharpe (2017)

usymmetrized
residue factor

1 —1/2

unitary amplitude with spectator
“stealing” some momentum



Reproducing the result (more details)...

1. Show that the relativistic quantization predicts (at leading order in |/L)
_ - =(u)
1 [1 T (k)T (K
2EB L3 = L ka/\/lg(k)
i - i

We use the second form of the finite-volume correlator

(u)
7Q’L
here we use that
. = AT Mo 1, = My
G oA to the order we work
: i ~ 0 g O l :
— [ﬁz_[]{&+\l/+ | H{&—F“ 4.
£ G G G @:) “
| U, U 1 1 _
| D( ) _ D(();L)L,U) | |: - . / :| Dg’g,u) _ Dé ) ![
| L2 = J; 2w Mo (K) J
. - - —— |



Reproducing the result (more details)...

1. Show that the relativistic quantization predicts (at leading order in |/L)
_ - =(u)
1 [1 T (k)T (K
2EB L3 = L ka./\/lz(k)
i - i

We use the second form of the finite-volume correlator

M3,L = Dgu’u) + ﬁ(Lu)/Cdf,g

1+ FglCdf,g

Expansion and analysis of all terms shows that the same relation holds for the
fuII (unsymmetrlzed) three-to-three scattering amplltude

_—— — — ——  ———— = — — e _ - — . - _ —

1
L3 Z 2wk./\/l2 Jl



Reproducing the result (more details)...

1. Show that the relativistic quantization predicts (at leading order in |/L)

1 [1 ] f(u)(k)F(’“)(k) (=
AE(L) = g |75 0~ /k 2on Mo (k) < |

I

We use the second form of the finite-volume correlator |

M3,L = Dgu’u) + ﬁgu)lcdf,g

1 + F3Kq¢ 3

Expansion and analysis of all terms shows that the same relation holds for the ,.f
fuII (unsymmetrlzed) three-to-three scatterlng amplltude 4

— — e — = — — —— ——— _ — — _ _ SR —

1
MU = ) { /}Mw ) M(u )
L3 Z 2wk./\/l2 Ji

Substltutlng pole ansatz and solving gives the clalmed result

| 1 I (k)T (k) 1 -
T2 (Bt AB(L? | BB [L32 / ]E “E% 2w Ma(F) E? - [Ep + AE(L)?

finite-volume pole infinite-volume pole
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1. Show that the relativistic quantization predicts (at leading order in /L)
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unitary amplitude with spectator
“stealing” some momentum



Reproducing the result (more details)...

2. Derive the functional forms of the infinite-volume quantities

r

167 E5 subthreshold, 29m, [

Ma(k) = ———= =m0 M(k) = 14

* Ieadlng order in’ 2
tp binding momentum . R _ 4r . '

p* = \J[(E — wi)? — B2)/4 — m?

To derive the residue factor we match to the non-relativistic wavefunction

1 2
—% ZV —I']

K
P(r1,r2) = —E¢(P1,I‘2)
this can be re- expressed using the Faddeev equation
1 0*

=G+ datds oYt el = Vi ) ()

We have found that the unsymmetrized residue factor is given by

2 ~
F(u) (k) — lim 4\/§m2 (—% — H()) ng

on shell

Substituting the known wave function and expanding about the leading singularity, we find
r 93/8..1/4 ‘
T (k) = Av/—c Mo (k)
h § w
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Reproducing the result (more details)...

1. Show that the relativistic quantization predicts (at leading order in /L)

() (b usymmetrized
1 (k)T (k) usymmetrize
AE(L) — 5P L3 Z / ka./\/lz( ) residue factor

::.: S-wave scatterlng amplltude-/

— /k

2. Derive the functional forms of the infinite-volume quantities

- 91—1/2
33/8.1/4 327m 3k
U — |
(k) = T AV=eMa(k) M (k) . _1 el
follows from matching to unitary amplitude with spectator
Effimov wavefunction “Stealing” some momentum
3. Evaluate the sum-integral difference with Poisson summation
singularity from two-to-two amplitude "'\
- —1/2
33/4 3/2 =1 3]‘6’2
AE(L) _ C‘A‘Q 6 ezLx-k_ 14 > 2/4:/\/§
IK 7 2wk | 4k® | <
2
o K 1 —2xkL/V3

= c|A e + -

A m (kL)3/2

MTH and Sharpe (2017)
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gWarm up and definitions

Basic set-up
[ Finite-volume correlator
[A Three non-interacting particles

[F] Two particles in a box
Alternative derivation

[ Truncation and application
[ Relating matrix elements

gThree particles in a box

3-to-3 scattering

[ (Sketch of) derivation
An unexpected infinite-volume quantity
Relating energies to scattering

IZTesting the result

Know issues
[ Large-volume expansion
[ Effimov state in a box

[] Other methods

[ (] Numerical explorations

[J Truncation at low energies
[J Toy solutions for various systems
[J Unphysical solutions

[] Looking forward



Other methods...
gA. Rusetsky, HW. Hammer, J.-Y. Pang:

Z Non-relativistic

V| Based in a specific EFT, focuses on extracting LECs,

Zr Simpler derivation and formulae, can handle K-matrix poles
] Argued to be “diagramatically equivalent”

 No t-channel cut, integrals go infinitely far below threshold

gM. Mai and M. Doring

Y Relativistic

] Built on unitary constrains, replace imaginary cuts with volume cuts
] Cannot see the dropping of O(e_mL)

] Connection to our approach is not yet well understood

See also Polejaeva, Rusetksy (2012) and Briceno, Davoudi (2013)



Usability?

“Despite this success, the quantization condition in these papers is not yet given in a
form suitable for the analysis of the real lattice data”™
Hammer, Pang and Rusetsky (201 7)

We were motlvated to challenge this clalm
We find that the “degree of usability’” is comparable between the two
approaches prowded one applles S|m|Iar apprOX|mat|ons

How do we make the two- partlcle formallsm usable?

Truncate partial waves Single partial wave
1
Mo (E3,0%) ~ )y Pi(cos 07) Mz, (E5) > M3 (E3,0%) ~ Ms 4 (E5) < ,

T —————————
Is there a three-particle analog?

T ) de,3(E*7 3793) ]Ciisfo?)( )GR
e e

N
Kats(E*,Q35,03) & Z Pr (95, Q3)Kas3.n(E)

n=0

At fixed energy Kora(E" 2% )

Further investigation is needed to understand suppression of higher de’:g,n(E*) :
S ———

is a smooth function on a compact space.




Numerics (keeping only s-wave and Kas3(E*, Q, Q3) ~ K525 (E¥))

. 5 1
iso __ __pniso S M E*)Q’,Q =S |D+L . — R
1/de 3( ) FS [E7P7L7M2] 3( 3 3) 1//Césf(?3_|_F§?go

For the numerical approach we restrict attention to... p* cotdo(p”) =——, P =0

Then the quantization condition is based on F%SO(E, L,a)
ma = —20, mL =6

5_
Oj\
T3 ] 5
E/m

Finite-volume energies wherever these curves intersect —1/K 53 (F)
e —

Briceno, Hansen and Sharpe (2018)
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< Provides a useful benchmark: Deviations measure three-particle physics

< Meaning for three-to-three scattering is clear



Kips(E) = 0 solutions

< Provides a useful benchmark: Deviations measure three-particle physics

< Meaning for three-to-three scattering is clear

@'Mgzsl + +]

Again: Non-interacting states (Mo, = M3 =0)

5.0 7
4.5
(nf 13 2 These two states are
~ 40 (1,9, degenerate in the NR theory
<5
Lﬂ 2 2 i
3.0 (n17n29n3) (0,0,0)
We see these clusters
4 5 6 7 8 5 ma = —20, mL =6
mL K
R ] 5

E/m




Kips(E) = 0 solutions

< Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear

= —s

—1/2

U \
4.5' \
-’
S 3.5- —
Q
3.0
e
4 5 6 7 8

]

Now we turn on the interactions

1/F¥°(E,L,a) =0

iso ~ 1 ~
Fl —ng[——F FL
D

H = /(2wK2)+F3—I—GS

known functions

1/L expansion



Kips(E) = 0 solutions

< Provides a useful benchmark: Deviations measure three-particle physics

< Meaning for three-to-three scattering is clear

@'Mgzsl + +]

a4 =

E—

Can also accommodate large a
1/Fi*°(E, L, a) =0

: F ~ 1 ~
Fiso — —f _F.—F
3 L3”[3 "H Lp

H=1/(2wKs) + F, + G,

known functions

....... 1/L expansion



iSO
K3

4.01

\

a = —8
\\\\\\

Threshold expansion

requires very large L

10 15

3

(E) = 0 solutions
Straightforward to vary a and to study large volumes

4.01

3.9

a=—4

4

15

3

4.01

3.9°

a = —2

N

and better

repulsive works as well
M
5 10 15 20
mL

But, to avoid poles in [Co, we must require a < 1/m




1SO

Non-zero Kif3(E): Toy resonance |

Here we consider a fun example for non-zero K j¢5

o c x 10°
a = —10 Kats(E) = T2 02
R

For small c we expect a narrow avoided level crossing, as c increases the gap grows

5.0+ 3.7 1 mem = (0.0
Q s () ()2
s | ()
4.5 - — 2 ()
~——~ 4.0 — 4 ()
— 3.5
0
3.4+ .
3.0 .0
.0
.0
2.9 3.3 ' '
0 8 4.0 4.5 5.0 5.9 0.0 0.9 7.0 7.5 8.0
mL mL

Further investigation is needed to see if this gives a physical resonance description



Unphysical solutions

Very large values of K j¢; can lead to unphysical solutions

o\

=

o

ﬁ

.Qm O_ .
=~ \

(-]

A i

|
105 /m?

o 2T T —107'mPKiPs = 19.0 ——=
2.6 — 4
=10 == —4
5.0 55 6.0 6.5 7.0 2.6 2.8 2.8 3.0
mL E/m E/m
Unphysical input? Enhanced (’)(e_mL) effects? Under investigation...




Non-zero Kq:3(E): Unitary bound state

The parameters g = —10% /Césfog( ) = 2500 lead to a shallow bound state

k=~ 0.1m where Eg = 3m — li2/m
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1SO

The parameters g = —10% Kat3(E) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)
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The parameters g = —10% /Césfg( ) = 2500 lead to a shallow bound state
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Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)
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Non-zero Kq:3(E): Unitary bound state
The parameters g = —10% /Césfg( ) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)

(2 K2 e —2xkL/V/3 1 g2
Egp(L)=3m — — — (98.35---)]AJ? 1+ 0 —anrk
(L) = 3m — = (9835 AP S 14 0( g et )|
—1- This describes the bound state for

kL ~0.ImL > 1
We fit our qg.c. data over 60 < mL < 70

3 —— x=0.1068, |A|* = 0.948
Close to one /

60.0 625 650 675  70.0
mL




Non-zero Kq:3(E): Unitary bound state
The parameters g = —10% /Césfg( ) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)

2

K k2 e~ 2rL/V3 1 K2
B(L) =3m - (98.35---)|A] m ("L} [ + ( : e >]

60.0 625 650 675




Non-zero Kq:3(E): Unitary bound state

The parameters g = —10% Kffg( ) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)
2 —2rkL /3 [

Ep(D)=3m— " _ (0835 )42 €

3.01

Significant finite-volume effects for realistic volumes

mL




Converting to scattering amplitudes




Converting to scattering amplitudes
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Converting to scattering amplitudes
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Converting to scattering amplitudes
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This only works below threshold... Relation above threshold crucially needed



Converting to scattering amplitudes
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Back to the bound state
o
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Back to the bound state
o
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Back to the bound state

It’s convenient to consider
the unsymmetrized version

(k) = /23_

: :

2
T (k) = lim [ER — E? ifo(k) _ o mL = 60
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Back to the bound state
.

20

25

30

T (k)2 x 10~

35

(k) =

It’s convenient to consider
the unsymmetrized version

Ea—

mL
2
T (k) = lim [ER — E? ifo(k) _ o mL = 60
E=bs 1/}Cdf,S + F3,oo O mlL =65
O mL="70
Not a fit!

Analytic prediction based on mapping Efimov
wavefunction to relativistic amplitude
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Outline

gWarm up and definitions

Basic set-up
[ Finite-volume correlator
[A Three non-interacting particles

[F] Two particles in a box
Alternative derivation

[ Truncation and application
[ Relating matrix elements

gThree particles in a box

3-to-3 scattering

[ (Sketch of) derivation
An unexpected infinite-volume quantity
Relating energies to scattering

IZTesting the result

Know issues
[ Large-volume expansion
[ Effimov state in a box

g Other methods

[] Numerical explorations

[ Truncation at low energies
[ Toy solutions for various systems
[ Unphysical solutions

[] Looking forward



Still lots to do

[] Finish result with intermediate two-
particle resonances

(] Understand unphysical solutions

[] Extend to non-identical, non-degenerate,
multiple channels, spin

[] Study subduction to finite-volume irreps

(] Understand rigorous parametrizations for
the infinite-volume observables

[] Convince practitioners that the formalism
IS mature

[[] Reliably measure finite-volume spectra

[] Extract three-particle scattering from
LQCD




Still lots to do

[] Finish result with intermediate two- [] Understand rigorous parametrizations for
particle resonances the infinite-volume observables
[(J Understand unphysical solutions [] Convince practitioners that the formalism
[] Extend to non-identical, non-degenerate, iS mature
multiple channels, spin [[] Reliably measure finite-volume spectra
] Study subduction to finite-volume irreps [] Extract three-particle scattering from
LQCD

Big picture: making progress, but not quite there yet

— - - -



That’s all folks!

Thanks to all the participants!



