DEELS 2018

18th April 2018

Characterisation of ESRF-EBS BPM blocks B. Roche

Acknowledgments: K. Scheidt, N. Benoist, F. Taoutaou special thanks to: A. Nosych

The European Synchrotron

OUTLINE

1. BPM block characterization

- Button to button transmissions
- 2. Chambers reception and test procedure

2. Output

1. Problems evidenced

3. Perspectives

BUTTON TO BUTTON TRANSMISSIONS

measurement of button to button transmission

• 4 x 3 measurements → sensitivity (or gain) of each of the 4 buttons

BUTTON SENSITIVITY CALCULATION

The so-called Lambertson method gives a way to compute the button's sensitivity from button-to-button transmissions:

$$V_{ij} = \frac{V_i}{V_i} = 2.50 \cdot G_{ij} g_i g_j.$$

V_i is the voltage at the button

g_i is the gain (or sensitivity) associated with the button

G_{ii} is the capacity coupling coefficient

We get 3 values for the g_i's:

$$2 \cdot 50 \cdot g_1^2 = \frac{V_{21}V_{14}}{V_{42}} \frac{G_{13}}{G_{12}G_{23}} = \frac{V_{12}V_{31}}{V_{32}} \frac{G_{23}}{G_{12}G_{13}} = \frac{V_{41}V_{31}}{V_{43}} \frac{G_{12}}{G_{23}G_{13}},$$

References:

Calibration of position electrodes using external measurements GR Lambertson - LSAP Note-5, Lawrence Berkeley Laboratory, 1987

Offset Calibration of the Beam Position Monitor Using External Means Y Chung, G Decker - AIP Conference Proceedings, 1992

BUTTON TO BUTTON TRANSMISSIONS

Ohm-meter
Interconnection plate
Switch-box
RF generator

Autonomous system:

On a trolley to be able to move easily (along a girder, and in different buildings)

No connection to ESRF network (for reliability)

Give an immediate answer if BPM is **OK** or **NOT**

CHAMBERS RECEPTION AND TEST PROCEDURE

Every BPM blocks are measured 2 times:

- At reception, just after heater installation
- After assembly on a girder with magnets, cables from BPM to interconnection plate, etc.

Between the two tests chambers experience bake-out, NEG-coating (not all of them)...

Test procedure consists in:

- measuring DC resistance
- performing RF transmission measurement

Current state (April 2018):

- 127 BPM blocks received and measured over the 320 BPM
- 84 assembled on a girder and ready for installation

PROBLEM EVIDENCED

Finite resistance between button and chamber

- a few cases found (8 chambers affected)
- resistances ranging from short-circuit to MOhms
- worse case was a NEG coated chamber with all 4 buttons affected → solved by blowing gas on buttons
- Also had a freshly received chamber affected (pollution not only coming from NEG coating)

We don't know the origin of this pollution yet. So far we treated buttons by burning « impurities » under vacuum with a voltage source.

→ all cases treated with success

An interconnection RF cable found grounded

Cable replaced, manufacturer informed

PROBLEM EVIDENCED

Retracted buttons:

- A small number of buttons have been found retracted
- These chambers will not be installed (kept as spares)

Histogram of buttons' sensitivity

PROBLEM EVIDENCED

Discrepancies between manufacturers

- Chamber #1 and #14 are similar, with the difference that they are made by different manufacturers
- RF transmission measurements show different variability in buttons' sensitivity

PERSPECTIVES

More characterisations:

- A more suitable RF-switch box will be done (better switches, power calibration, ...)
- BPM blocks will also be electrically measured after installation (check cabling, measure button to chamber resistivity).

Minimize offset of a BPM block by compensating for:

- Mechanical offset → measured by alignment group (chamber deformation, misalignment with adjacent quadrupoles)
- Buttons' sensitivity
- Offset due to electronics (Libera Spark) / RF-cabling

Also:

- Take non-linear effect of the BPM blocks into account
 - → work in collaboration with ALBA (A. Nosych)

Compensating for BPM offsets will be essential for ESRF-EBS commissioning (first turns). Once we will have a stored beam, beam base alignment techniques will be used to measure BPM offsets more precisely.