
A forward look to H in ep

A contribution to our discussion

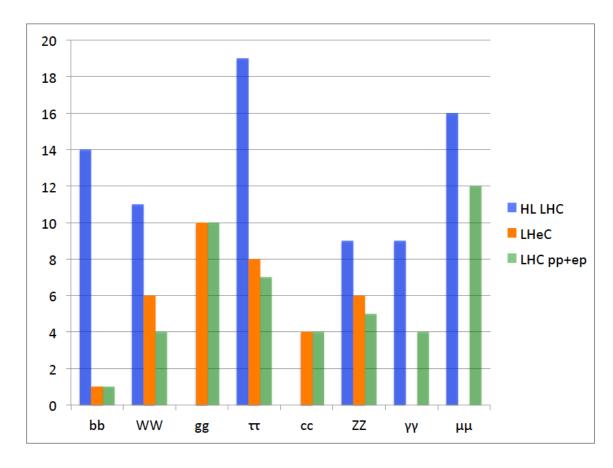
For the HL HE LHC Workshop and the LHeC CDR Update we have to have a 'complete' answer to the question how well LHeC (and FCCeh) determine the Higgs properties

Max Klein
University of Liverpool

Tall at the LHeC/FCCeh Higgs Meeting, 8 January, 2018

Branching br_i and Rates

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \to b\overline{b}$ 0.577	113 100	13 900	2 450 000
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H \rightarrow \tau^+ \tau^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l2\nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500


In their order of br, the 6 most abundant decays are: bb, WW, gg, $\tau\tau$, cc, ZZ: B= Σ br_i=1 (0.996)

ATLAS and LHC Prospect

These results/estimates will almost certainly improve. HL-HE LHC Workshop ATLAS analyses: eg H-bb: recent paper 1708.03299: μ =0.9 +- 0.18 +0.21-0.19= 0.90 \rightarrow 30% with 36 fb-1. can expect this becomes sth like O(5)%, not 14% as ATLAS predicted. Furthermore, LHC will be the ATLAS+CMS average. \rightarrow maybe the LHC result will be green/2

Future LHC

Considered 3 cases: ATLAS 2014 prospect ("HL LHC"), LHeC (bb, cc from Uta et al, others guessed from rates and decay peculiarities, gg assumed to work..), LHC (ep+pp) a tentative combination of LHeC + LHC with no theory if they are similar, or just the best (as bb from ep)

Questions

Can we do $H \rightarrow gg$ in ep (pp)?

We expect 400 H \rightarrow $\gamma\gamma$ events in ep. Is that hopeless?

Can we get estimates for all extra 4 channels (gg,ττ,WW,ZZ) by summer/fall 18?

Can we determine the full width from an inclusive NC study?

How do we estimate the theory gain through ep for pp?

Can/shall we do an EFT coupling fit? eg. a la Peskin et al: 1708.0912 (couplings sound twice better than signal strength. Their fit does a magic boost for iLC...

It is crucial for the LHeC to converge on this and I want to thank cordially all involved

A Happy New Year