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Galactic Rotation Curves

Rubin et al. Astrophys. J. 225:L107-L111 (1978).

Bullet Cluster

X-ray: NASA/CXC/CfA/ M. Markevitch et al.; 
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. 
Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.

Cosmic Microwave Background

Planck Collaboration. A&A 594, A13 (2016).

● Vast evidence for non-luminous dark matter in 
the universe

● Strong impact on astrophysics and cosmology

Dark Matter
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Dark Energy: 
68.5%

Normal Matter:
4.9%Dark Matter:

26.6%

Source: Planck Collaboration. A&A 594, A13 (2016).

● Thermal production in 
early universe

● Relics remain today, via 
some mechanism (often 
assumed freeze-out)

Composition of the Universe
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● Galactic “halo” of dark 
matter: approximately 
Maxwell-Boltzmann 
distribution

v0 = 220 km/s

Cutoff vescape = 540 km/s

● ρDM = 0.3 GeV/cm3

Dark Matter in our Galaxy
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Image from Wikipedia:Standard Model

● Particle nature of dark matter? 
Interactions with normal matter?

● Requires physics beyond the Standard 
Model

● Popular candidate: Weakly Interacting 
Massive Particle (WIMP)
○ Massive particle at the 

electroweak scale (GeV - TeV)
○ Many theory candidates, e.g. 

LSP in SUSY
○ “WIMP miracle”: current DM 

density explained by weak-scale 
mass and cross-section

Dark Matter as a Particle
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Dark Matter Direct Detection



Leading limits:
LUX, PANDAX-II, XENON1T
SuperCDMS
CRESST-II
CRESST nu-cleus surface experiment

Upcoming:
LUX-ZEPLIN
SuperCDMS SNOLAB

Decades-long campaign to probe WIMP 
dark matter (Lee-Weinberg limit:
m > 2 GeV)

10WIMP mass

Z

H

Loop

Status of Direct Detection
Mediator



Issues:

1) Approaching the “neutrino floor”, a 
challenging background to 
overcome

2) Assumption of electroweak-scale 
physics--worth keeping?

11WIMP mass

Mediator

Z

H

Loop

Status of Direct Detection
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Status of Direct Detection

WIMP mass

Solution: expand the field!

Keep assumption of thermal 
production; allows DM masses down 
to few keV

Loosen restrictions on mediator

What target allows us to explore 
these masses?



Max kinetic energy carried 
by dark matter is
KEmax = ½ mDM vescape

2

Transferred inefficiently to 
target unless mDM ≈ mtarget

To probe MeV-scale dark 
matter, we need:
1) Light target
2) Ability to access meV 

recoil energies
13

DM kinetic energy at cutoff

Dark Matter Kinematics



HELIUM!
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He-4 meets all the requirements plus:

● Cheap

● Easy to purify

● Intrinsically radiopure

● Remains liquid/superfluid down to 
absolute zero

● Monolithic, scalable

● Calorimetry for signal readout

16

Superfluid Helium as a Dark Matter Target
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Proposed Detector

O(1 kg) cubic mass of helium, operated at ~50 
mK, in dilution refrigerator

5 transition-edge sensor (TES) arrays on 
walls, adjacent to helium

● Detect UV photons, triplet excimers, IR 
photons

Vacuum layer between helium and 6th TES 
array

● Detect quasiparticles via quantum 
evaporation



IP

18

Recoils in Helium (generic incident particle IP)

He

Ionization Excitation

He2
*He+ e-

~100% recombination

Quasiparticles (heat)

Singlet UV 
Photons (16 eV)

Triplet 
Molecules

IR photons 
(1 eV)
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Recoils in Helium (generic incident particle IP)

He

Ionization Excitation

He2
*He+ e-

~100% recombination

Quasiparticles (heat)

Singlet UV 
Photons (16 eV)

Triplet 
Molecules

IR photons 
(1 eV)
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Detecting Excimer Signal He2
*

Singlet decay

● Half-life of few ns
● 16 eV photon

Hits detector walls on ns timescale

Detected directly by TES

Calorimetry possible because of 
large Kapitza resistance
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Detecting Excimer Signal He2
*

Triplet decay

● Half-life of 13 seconds
● 16 eV photon (but too slow for 

our detector)

Helium dimer molecule travels 
ballistically, detected by TES on few 
ms timescale

Also some IR from higher 
excitations, 1 eV
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Detecting Excimer Signal

Energy measured in TES (eV)
Carter et al.J Low Temp Phys (2017) 186:183–196

Observation of singlet/triplet excimers 
by Carter et al.

● Titanium TES in 100 mK 4He bath
● 22Na gamma source

Singlets from TES coincident with 
PMT; triplets from only TES
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IP
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Recoils in Helium (generic incident particle IP)

He

Ionization Excitation

He2
*He+ e-

~100% recombination

Quasiparticles (heat)

Singlet UV 
Photons (16 eV)

Triplet 
Molecules

IR photons 
(1 eV)



Quasiparticles: collective excitations in 
superfluid helium

Long-lived

Classified based on momentum: 
Phonons, R- rotons, R+ rotons
(roton ≈ high-momentum phonon)

At interface, can transform from one 
type to another (i.e. P  ↔  R-  ↔  R+) 
if Eroton < Equasiparticle < Emaxon

24

Quasiparticles in 4He
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Detecting Quasiparticle Signal

Quasiparticle

Recoils produce ~0.8 meV phonons 
and rotons

Propagate ballistically, bounce 
around the detector (few ms)

Transmission of quasiparticles into 
the wall is suppressed by Kapitza 
resistance

Quantum evaporation of a helium 
atom into vacuum, followed by 
energy deposit on top TES

He atom



Binding energy between 
helium and solid will amplify 
signal

1 meV recoil energy → up to 
40 meV detectable energy

Film burner to remove 
helium from calorimeter

26

Detecting Quasiparticle Signal
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Previous work by HERON
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364 keV electron pulse

Scintillation

Evaporation

HERON: proposed pp 
neutrino observatory

R&D at right shows 
simultaneous detection 
of photons and rotons

Achieved 300 eV 
threshold at 30 mK 

1000 1500 2000
Source: J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000).
Also see: J. S. Adams et al. Physics Letters B 341 (1995) 431-434.
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Previous work by HERON
Successful operation of film burner

R. Torii et al. Review of Scientific Instruments 63, 230 (1992).

Si wafer with 
film burner

Si wafer without 
film burner
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Quasiparticle Propagation
In 4He bulk, quasiparticles move freely

At interface, can be transmitted, reflected, or 
transformed (if E conserved)

We simulate probabilities for q.p. interactions 
(e.g. at right: reflection at helium-solid interface)

p [eV/c]

A
ng

le
 [r

ad
]

P→R-
P→R-

R-→R-
R+→R-

R+→R-

Reflection as R-
(allowed; forbidden)

Note:
Black lines at left =
    White lines at right



Simulated all reflection/transmission 
probabilities †

Transmission highly suppressed, as 
expected; allows ballistic movement 
without decay

Reflection as same flavor most likely, 
but significant chance of changing 
flavor
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Quasiparticle Propagation
Helium-Solid Interface

† Probabilities based on calculations in 
Phys. Rev. B 77, 174510 (2008).



At helium-vacuum interface, 
transmission (quantum evaporation) is 
most likely for phonons

32

Quasiparticle Propagation
Helium-Vacuum Interface
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Quantum Evaporation

p = 0.001
p = 0.01
p = 0.1

Simulated pulses from evaporation

Vary height of recoil (h = 20 cm at top of detector)

Vary quasiparticle 
loss probability

h = 1 cm
h = 10 cm
h = 19 cm
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Energy Partition
Nuclear Recoil (NR)

Recoil Energy [eV]

Electron Recoil (ER)

Recoil Energy [eV]

101 102 103 104 102 103 104 105101105

Means

Poisson 
Fluctations

From G. Seidel, 
unpublished;

Extrapolated below 
100 eV
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Discrimination

Signal is NR; 
backgrounds are 
dominated by ER

Discriminate between 
ER and NR by using 
ratio of energy in 
each channel

Cannot discriminate 
light/phonon ratio 
below 20 eV, but 
superb discrimination 
above 500 eV

ER acceptance at 50% NR acceptance
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Backgrounds

Shielding based on 
SuperCDMS SNOLAB 
projections †

Deep underground

† Phys. Rev. D 95, 082002 (2017)
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Backgrounds
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Backgrounds

Gamma 
backgrounds

Coherent nuclear 
recoils via Rayleigh, 
Thomson, Delbruck 
scattering
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Backgrounds

Compton 
background

ER background:
80 evts/kg/day

0.06 evts/kg/day

Discrimination
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Backgrounds

Neutrinos

Coherent elastic 
neutrino-nucleus 
scattering (recently 
observed!)

For 100 kg detector 
mass and 1 year 
exposure, expect ~60 
events, mostly pp 
neutrinos
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Backgrounds

Neutrons

Approximately 
SuperCDMS SNOLAB 
projections

Not a dominant 
background; mostly 
outside search region
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Projected Sensitivity

Red: Projected sensitivity of 
superfluid 4He detector
● 10 eV recoil threshold
● 1 kg-yr exposure
● “Shovel-ready”; existing 

technology

Black Solid: Neutrino floor in Xe

Grey Shaded: Currently 
excluded parameter space

Black Dashed: Excluded by 
CMB measurements and XQC

Magenta: Excluded by standard 
NR experiments
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Red Dashed: Two more 
generations of superfluid 4He 
detector

● 100 meV recoil threshold;
10 kg-yr exposure;
Requires extra R&D

● 1 meV recoil threshold;
100 kg-yr exposure;
Theoretical minimum
    (Single evaporated atom)

Projected Sensitivity
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Projected Sensitivity

Black Dashed: Extended 
neutrino floor to ~100 keV 

Used coherent interactions of 
solar neutrinos with helium

Dominated by pp and 7Be 
neutrinos
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Projected Sensitivity
Red Extension: Nuclear 
bremsstrahlung signal

Nucleus de-excites, releasing 
photon of arbitrarily low energy

Phase space suppression

Nucleus Nucleus

ɣ

See: C. McCabe. Phys. Rev. D 96, 043010 (2017).
C. Kouvaris and J. Pradler. Phys. Rev. Lett. 118, 031803 (2017)
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Projected Sensitivity

Red Dot-Dashed: Two-Phonon 
Excitation

Access to lowest DM masses

Real 
phonons

Virtual 
phonon

K. Schutz and K. M. Zurek. Phys. Rev. Lett. 117, 121302 (2016)
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Red Upper Curves: Earth 
Shielding

If σ is high, DM can scatter in the 
Earth and lose kinetic energy → 
below experiment threshold

Upper limits on sensitivity for 
facilities at 100 m and 1478 m 
underground

ν-cleus operated above ground, 
XQC above atmosphere

Considering doing a surface run

Projected Sensitivity

T. Emken et al. Phys. Rev. D 96, 015018 (2017)
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Projected Sensitivity

Other force carriers: dark 
photon

Additional U(1) symmetry in 
dark sector, kinetic mixing 
with EM field

Heavy vector particle can be 
mediator for DM-nucleus 
scattering

DM-nucleon + DM-electron 
scattering both allowed; 
equal coupling
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Projected Sensitivity

Red: Three generations of 
superfluid 4He detector

Grey Shaded: Currently 
excluded parameter space

Magenta: Excluded by 
standard NR experiments

Cyan: Direct constraints on 
σe by XENON10/100

Blue: Indirect constraints by 
BaBar, E137, LSND



● Superfluid 4He offers a 
cheap, practical, and 
powerful target for probing 
new dark matter interactions

● Existing technology 
(HERON; advancements in 
calorimetry by CDMS, 
CRESST, etc.)

● Paper in progress...stay 
tuned!
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Conclusion


