Higher Spin de Sitter Quantum Gravity

Frederik Denef

August 27, 2018
CERN

D Anninos, FD, R Monten and Z Sun - arXiv:1711.10037 (+ more in discussion)

Outline

Motivation

Toy models

Higher Spin de Sitter Hilbert Space

A few more details on results

Motivation

dS-CFT?

- Quantum gravity with negative c.c. $= \pm$ solved problem: AdS-CFT. AdS Hilbert space $=$ CFT Hilbert space.

$$
Z_{\mathrm{CFT}}[\text { sources }=B] \stackrel{\diamond}{=} Z_{\text {bulk }}[\text { asympt. fields } \stackrel{r \rightarrow \infty}{\sim} B] .
$$

- Our universe: positive c.c. \rightsquigarrow dS-CFT? [Strominger,Witten '01,Maldacena '02]:

$$
Z_{\mathrm{CFT}}[\text { sources }=B] \stackrel{?}{=} Z_{\mathrm{bulk}}[\text { as. fields } \stackrel{t \rightarrow \infty}{\sim} B] \equiv \psi_{\mathrm{HH}}(B)
$$

Here $\psi_{\mathrm{HH}}(B)=$ "wave function of the universe" [Hartle-Hawking '83]

Examples?

- Although isometry group $\mathrm{dS}_{d+1}=\mathrm{SO}(\mathrm{d}+1,1)=d$-dim Euclidean conformal group, no good reason in general to expect local CFT dual.
- No concrete candidate proposed for decade.
- Changed with [Anninos-Hartman-Strominger '11]:

$$
\left.\mathrm{dS}\right|_{\wedge \sim N} \text { higher spin gravity theories } \leftrightarrow \text { Large } N \text { ghost vector models }
$$

e.g. free 3d fermionic scalar $\operatorname{Sp}(\mathrm{N})$ model \leftrightarrow minimal 4d type A Vasiliev:

$$
\begin{aligned}
Z[B] & \propto \int d \chi e^{-\int \chi D \chi+: \chi B \chi:} \\
& \propto \operatorname{det}(D+B)^{+\frac{N}{2}} e^{-\frac{N}{2} \operatorname{Tr}\left(D^{-1} B\right)} \propto e^{-\frac{N}{2} \operatorname{Tr}\left(\frac{1}{2}\left(D^{-1} B\right)^{2}-\frac{1}{3}\left(D^{-1} B\right)^{3}+\ldots\right)}
\end{aligned}
$$

where $D=-$ Laplacian and $B=$ sources (spin $s=0,2,4, \ldots$ fields).

Great, but...

- $Z[B]=\psi_{\mathrm{HH}}[B]=\langle B \mid v a c\rangle$ generates bulk vacuum in - "Dirichlet" out correlation functions:

$$
\left.\partial_{B_{1}} \cdots \partial_{B_{n}} Z[B]\right|_{B=0}=\langle B=0| \hat{A}_{1} \cdots \hat{A}_{n}|v a c\rangle
$$

- What we really want: vacuum-vacuum correlation functions, expectation values, probabilities, ... \rightsquigarrow needed to compute, say, higher spin "CMB"

- Taking $\psi_{\mathrm{HH}}[B]=Z[B]$ seriously,

$$
\langle v a c| \hat{B}_{1} \cdots \hat{B}_{n}|v a c\rangle=\int[d B]|Z[B]|^{2} B_{1} \cdots B_{n}
$$

- But: measure $[\mathrm{dB}]=$???, domain $B=$??? Hilbert space $=$??? Operator algebra of observables $=$??? ... Not determined by "dual" CFT!

Shut up and calculate?

- Whatever. Just take $[\mathrm{dB}]=\mathrm{dB}=$ flat measure; domain $=$ all real B.
- Approach followed in [Anninos-FD-Harlow,...]. Constant scalar b_{0} on S^{3} slice:

$$
\psi\left(b_{0}\right) \propto \operatorname{det}\left(1+D^{-1} b_{0}\right)^{\frac{N}{2}} e^{-\frac{N}{2} \operatorname{Tr}\left(D^{-1} b_{0}\right)} \propto e^{-\frac{N}{4} \int^{b_{0}-\frac{1}{4}} \pi \sqrt{u} \operatorname{coth}(\pi \sqrt{u}) d u}
$$

Diverges exponentially: $\psi\left(b_{0}\right) \sim e^{N\left|b_{0}\right|} \times$ oscill. for $b_{0} \rightarrow-\infty$. Disaster \times

- Even if $\psi\left(b_{0}\right)$ had turned out nice for $b_{0} \rightarrow \pm \infty$, result would still be pretty useless: computing actual probability $P\left(b_{0}\right) \propto \int d B^{\prime}\left|\psi\left(b_{0}, B^{\prime}\right)\right|^{2}$ still requires integral over wild infinity of other vars B^{\prime}. Intractable \times
- Too many d.o.f. in B to be plausibly fundamental/indep. Give up?

The Surprisingly Elegant Vasiliev Universe

We propose a different starting point, not $d S-C F T$, providing direct construction of the fundamental microscopic Hilbert space: "Q-model".

- Will only require match to original $\operatorname{Sp}(\mathrm{N})$ dS-CFT proposal of [AHS] in regime where integration measure and domain don't not matter, i.e. in leading $N \rightarrow \infty$ saddle point approx (= regime of validity of their work).
- Complete, non-perturbative formulation of higher spin quantum gravity in de Sitter space, capable of computing vacuum correlation functions, probabilities, expectation values, etc.
- Turns out to be surprisingly computationally powerful framework: previously seemingly intractable tasks become straightforward, e.g. computing actual probabilities for arbitrarily large scalar field excursions, exact vacuum correlation functions, including 4-point function!
- Long-standing questions about quantum gravity in dS space can in principle be addressed in a quantitatively precise, computable way.

Before stating full construction, it will be useful to consider some toy models

Toy models

1D QM toy model

Say we are give a single-variable QM wavefunction equal to a "partition function" for N fermionic variables $\chi^{A}, A=1, \ldots, N$:

$$
\Psi(b) \propto \int d^{N} \chi e^{-\frac{1}{2}(\chi \chi+b: \chi \chi:)} \propto(1+b)^{+\frac{N}{2}} e^{-\frac{N}{2} b}
$$

Here $\chi \chi \equiv \epsilon_{A B} \chi^{A} \chi^{B},: \chi \chi: \equiv \chi \chi-\langle\chi \chi\rangle_{0}=\chi \chi+N$, and $b \in \mathbb{R}$.

Note: is $d=0$ analog to $\Psi[B]=Z[B]$ for original $d=3 \mathrm{Sp}(\mathrm{N})$ CFT:

- Hilbert space unknown at this point (domain b ? measure $[d b]$?)
- Shut up and calculate fails: exponential divergence at $b \rightarrow-\infty$.

Large N analysis toy model

Generating function for moments $\langle\Psi| b^{n}|\Psi\rangle$ is:

$$
\mathcal{Z}(\lambda) \equiv\langle\Psi| e^{N \lambda b}|\Psi\rangle=\frac{1}{\mathcal{Z}_{0}} \int[d b](1+b)^{N} e^{-N(1-\lambda) b}
$$

Domain and measure [db] unspecified, but irrelevant for leading $N \rightarrow \infty$ saddle point evaluation. Saddle point equation: $\frac{1}{1+b}=1-\lambda \Rightarrow b=\frac{1}{1-\lambda}-1 \Rightarrow$

$$
\mathcal{Z}(\lambda) \approx(1-\lambda)^{-N} e^{-N \lambda} \quad(N \rightarrow \infty)
$$

Notice this can be viewed as partition function for $2 N$ bosonic variables q^{α} :

$$
\mathcal{Z}(\lambda) \approx \frac{1}{\mathcal{Z}_{0}} \int d^{2 N} q e^{-q q+\lambda: q q:} \quad(N \rightarrow \infty)
$$

where $q q \equiv \delta_{\alpha \beta} q^{\alpha} q^{\beta},: q q:=q q-\langle q q\rangle_{0}=q q-N$.

Q-model Hilbert space

Thus, if we define consider Hilbert space of wave functions $\Psi(q)$ with $q \in \mathbb{R}^{2 n}$ and standard inner product

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle \equiv \int d^{2 N_{q}} \psi_{1}(q)^{*} \psi_{2}(q)
$$

and we define a "vacuum" state

$$
\psi(q) \equiv e^{-\frac{1}{2} q q}
$$

then we have the following leading large- N equivalence:

$$
\langle\Psi| e^{N \lambda b}|\Psi\rangle \approx\langle\psi| e^{N \lambda b}|\psi\rangle \quad(N \rightarrow \infty)
$$

provided on the right hand side we identify

$$
b \equiv \frac{1}{N}: q q:=\frac{1}{N} q^{2}-1
$$

This is independent of the measure on the left hand side (for λ not too large, and assuming measure does not depend exponentially on N and is non-singular near $b=0$: natural conditions to have reasonable large- N limit).

Exact equivalence at finite N

Alternatively we can take the Q-model Hilbert space \mathcal{H} as the starting point, and declare this to be the precise definition of the vacuum wave function and its Hilbert space, under the above identification $b=\frac{1}{N}: q^{2}:$, turning the above large- N equivalence into an exact equivalence. This effectively amounts to a specific choice of measure and domain for b in the original formulation.

To see this, note that the $\mathrm{O}(2 \mathrm{~N})$-invariant subspace of \mathcal{H} has a basis of eigenkets $|h\rangle$ of $\hat{q}^{2}=\hat{h}=1+\hat{b}$, defined by

$$
\frac{1}{N} \hat{q}^{2}|h\rangle=h|h\rangle, \quad \int_{0}^{\infty} \frac{d h}{h}|h\rangle\langle h|=1 \quad \Rightarrow \quad\langle q \mid h\rangle \propto h^{1-N / 2} \delta\left(\frac{1}{N} q^{2}-h\right)
$$

[Measure depends on normalization of $|h\rangle$; above is standard one arising from canonical quantization of the $\mathrm{O}(2 \mathrm{~N})$-invariant Darboux coordinates $\left\{\frac{1}{2} \log q^{2}, p q\right\}$.]

With $\psi(q) \equiv\left\langle q \mid \psi_{0}\right\rangle=e^{-\frac{1}{2} q^{2}}$ we then have the exact equivalelence, for any N :

$$
\Psi(b) \equiv\langle h \mid \psi\rangle=\int_{q}\langle h \mid q\rangle\langle q \mid \psi\rangle=\ldots \propto h^{\frac{N}{2}} e^{-\frac{N}{2} h} \propto(1+b)^{\frac{N}{2}} e^{-\frac{N}{2} b}
$$

where $h=1+b$. This is exactly our original $\Psi(b)$! Inner product becomes:

$$
\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=\int_{-1}^{\infty} \frac{d b}{1+b} \Psi_{1}(b)^{*} \Psi_{2}(b)
$$

[Note: basically just change of variables from Cartesian to spherical.]

Toy model II: discretized $\operatorname{Sp}(\mathrm{N})$ model with K spatial points

- This readily generalizes to discretized $\operatorname{Sp}(\mathrm{N})$ toy model:

$$
\Psi_{0}(B) \propto \int d \chi e^{-\frac{1}{2} \operatorname{Tr}(\chi D \chi+: \chi B \chi:)} \propto \operatorname{det}\left(1+D^{-1} B\right)^{-\frac{N}{2}} e^{-\frac{N}{2} \operatorname{Tr}\left(D^{-1} B\right)}
$$

where $\chi=\chi_{x}^{a}, a=1, \ldots, N, x=1, \ldots, K, D$ and B are symm. $K \times K$ matrices with components $D^{x y}, B^{x y}$. D can be thought of as a discretized Laplacian for K lattice points, and $B=$ source. Previous toy: $K=1$.

- To leading order in large N saddle point approximation this is equivalent to an $\mathrm{O}(2 \mathrm{~N})$-invariant Q-model, where Q has $K \times 2 N$ components Q_{x}^{α}, with

$$
\psi_{0}(Q) \equiv e^{-\frac{1}{2} \operatorname{Tr}(Q D Q)}, \quad D^{x y}+B^{x y}=H^{x y}=\frac{1}{N} Q^{x \alpha} Q^{y \alpha}, \quad Q^{x \alpha} \equiv D^{x x^{\prime}} Q_{x^{\prime}}^{\alpha}
$$

- At finite $N \geq \frac{K}{2}$, the equivalence is exact for domain and measure

$$
H>0, \quad[d H]=\frac{d H}{(\operatorname{det} H)^{\frac{K+1}{2}}} .
$$

[This is unique $\mathrm{GL}(\mathrm{K})$-invariant, volume element for natural metric $d s^{2}=\operatorname{Tr}\left(H^{-1} d H\right)^{2}$.]

- If $K>2 N$, then $H=\frac{1}{N} Q Q^{T}$ has reduced rank $2 N<K$ and measure [$d H$] degenerates, but Q-model remains well-defined!

Higher Spin de Sitter Hilbert Space

Summary of construction

(1) Hilbert space of minimal type $A \mathrm{dS}_{4}$ Vasiliev hs quantum gravity:

- Not dS-CFT - we do not start from $\operatorname{Sp}(\mathrm{N})$ model CFT.
- Fundamental d.o.f.: $2 N$ bosonic scalar fields $Q^{\alpha}(x), \alpha=1, \ldots, 2 N, x \in \mathbb{R}^{3}$.
- \mathscr{H}_{0} : Wave functions $\psi(Q)$ with standard (flat measure) inner product:

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle \equiv \int d Q \psi_{1}(Q)^{*} \psi_{2}(Q)
$$

- $\mathscr{H} \equiv \mathrm{O}(2 \mathrm{~N})$-invariant subspace of \mathscr{H}_{0}.
- Vacuum state $\left|\psi_{0}\right\rangle \in \mathscr{H}$:

$$
\psi_{0}(Q) \equiv e^{-\frac{1}{2} \int Q D Q}, \quad D \equiv-\nabla^{2} \quad \text { (partial gauge fixing) }
$$

- $\mathscr{H}_{\text {phys }} \equiv$ hs-invariant subspace of \mathscr{H}.
(2) Dictionary:
- Late time $(\eta \rightarrow 0)$ asymptotics of spin-s bulk field:

$$
\phi_{i_{1} \ldots i_{s}}(\eta, x) \sim \beta_{i_{1} \cdots i_{s}}(x) \eta^{2-2 s}+\alpha_{i_{1} \ldots i_{s}}(x) \eta
$$

- Identifications:

$$
\begin{gathered}
\left|\psi_{H H}\right\rangle=\left|\psi_{0}\right\rangle, \quad \tilde{\beta}_{i_{1} \ldots i_{s}}(x)=Q^{\alpha}(x) \partial_{i_{1}} \cdots \partial_{i_{s}} Q^{\alpha}(x)+\cdots \\
\tilde{\beta} \equiv \text { "shadow" of } \beta \text {; in momentum space: } \tilde{\beta}_{i_{1} \cdots i_{s}}(k) \equiv k^{2 s-1} \beta_{i_{1} \cdots i_{s}}(k)
\end{gathered}
$$

(3) Reproduces [AHS] / bulk perturbation theory at large N / tree level.

Summary of some results

- Exact higher spin "CMB" correlation functions (momentum space):

- Scalar-scalar-scalar, scalar-scalar-graviton 3-pt functions.
- Scalar 4-pt function (nontrivial! - details few slides down)
- Exact probabilities for arbitrarily large field excursions:

Probability $P\left(B_{0}\right)$ for constant scalar mode on global de Sitter S^{3}.

Summary of some more results

- Approximate reconstruction of perturbative bulk QFT Heisenberg algebra $\left[\beta^{\prime}, \alpha_{J}\right]=i \delta_{J}^{\prime},\left[\alpha_{l}, \alpha_{J}\right]=0=\left[\beta^{\prime}, \beta^{J}\right]$ on microscopic \mathscr{H} :
- up to minimal error term $\sim e^{-\mathcal{O}(N)}$
- operators must be coarse grained to effectively $<\mathcal{O}(N)$ spatial "pixels"

$K_{\text {eff }}=10^{6}$

$K_{\text {eff }}=10^{4}$

$K_{\text {eff }}=10^{2}$

Schrödinger's cat in HSdS: resolution bounded by N

- hs-invariant $\mathscr{H}_{\text {phys }}$ quasi-topological: finite number of n-particle states; all hs-invariant quantities computed by $2 N \times 2 N$ matrix model $\rightsquigarrow 2 N$ physical degrees of freedom.
- Suggestive of idea of cosmological complementarity, dS entropy $S_{\mathrm{dS}} \sim N$, etc ...

A few more details on results

Sampling Vasiliev universes

$d=1, K=500$. row 1: $H_{x y}=\frac{1}{N} Q_{x}^{\alpha} Q_{y}^{\alpha}$. row 2: $B_{x y}=\frac{1}{N}: Q_{x}^{\alpha} Q_{y}^{\alpha}:$. row 3: $B(x)=\frac{1}{N}: Q_{x}^{\alpha} Q_{x}^{\alpha}:$.
Note the strong non-Gaussianities at small N.

Probabilities for arbitrarily large field excursions

Probability $P(\beta)$ for constant scalar mode on S^{3} (global dS) slice.

At large N :

$$
P(\beta) \sim \begin{cases}e^{-N \beta} & \beta \rightarrow+\infty \\ e^{-N \beta^{2}} & \beta \rightarrow 0 \\ e^{-N|\beta|^{3}} & \beta \rightarrow-\infty\end{cases}
$$

Note: seemingly intractable problem of computing $P(\beta)=\int\left[d B^{\prime}\right]\left|\Psi_{0}\left(\beta, B^{\prime}\right)\right|^{2}$ reduced to almost trivial computation in Q-model!

Scalar 4-point function

Vacuum scalar 4-point function in momentum space

$$
G_{4} \equiv\langle 0| \beta\left(\vec{p}_{1}\right) \beta\left(\overrightarrow{p_{2}}\right) \beta\left(\vec{p}_{3}\right) \beta\left(\vec{p}_{4}\right)|0\rangle
$$

gets contributions in bulk from infinite number of particle exchanges. Can be computed exactly in Q-model, using methods of [Bzowski-McFadden-Skenderis]:

$$
\begin{aligned}
G_{4} & =\frac{1}{N^{2}} p_{1} p_{3} \delta_{\vec{p}_{1}+\vec{p}_{2}} \delta_{\vec{p}_{3}+\vec{p}_{4}} \\
& +\frac{8}{N^{3}} \frac{\left(p_{1} p_{2}+p_{3} p_{4}\right) p_{21}+\left(p_{1} p_{4}+p_{2} p_{3}\right) p_{23}}{p_{21} p_{23}\left(p_{1} p_{3}+p_{2} p_{4}+p_{21} p_{23}\right)} \delta_{\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\vec{p}_{4}} \\
& +\left(\overrightarrow{p_{2}} \leftrightarrow \overrightarrow{p_{3}}\right)+\left(\overrightarrow{p_{2}} \leftrightarrow \overrightarrow{p_{4}}\right)
\end{aligned}
$$

where $p_{n} \equiv\left|\vec{p}_{n}\right|, p_{m n} \equiv\left|\vec{p}_{m}+\vec{p}_{n}\right|$.

- Checked numerically.
- Surprisingly simple! Equivalent to 3d 1-loop "4-mass box integral". Explicit result obtained before in amplitude literature [Lipstein-Mason '12] covers half dozen pages of nasty Mathematica output.
- Surprisingly (?) "soft" in UV, in view of [Baumann-Goon-Lee-Pimentel '17], reminiscent, perhaps, of amplitude softening in string theory by summing over infinite number of particles?

Bulk QFT reconstruction

- First step: reconstruction perturbative QFT Heisenberg algebra $\left[\beta^{\prime}, \alpha_{J}\right] \propto i \delta_{J}^{\prime} \rightsquigarrow$ definition α_{J} on \mathscr{H} ? i.e. expression in terms of operators Q_{x}^{α} and $P_{\alpha}^{\alpha}=-i \partial_{Q_{x}^{\alpha}}$?
\rightsquigarrow Let us first consider this problem in $K=1$ toy model.

Heisenberg algebra in $K=1$ toy model

Recall $1+b=h=\frac{1}{N} q^{2}$.
Can exact Heisenberg algebra $[\hat{h}, \hat{a}]=i$ be realized in q-model?
No: because $h>0$, no such self-adjoint â can exist. (If it did exist, $U(c) \equiv e^{i c a ̂}$ would be unitary translation operator mapping $h \rightarrow U(c) h U(c)^{-1}=h+c$ for arbitrary $c \in \mathbb{R}$, violating $h>0$.)

Naively, $\hat{a} \equiv \hat{h}^{-1} \hat{d}+h . c ., \hat{d} \equiv \frac{1}{8}(\hat{q} \hat{p}+\hat{p} \hat{q})=-\frac{i}{2} h \partial_{h}$ would seem to do the job. However this operator, while hermitian, is not self-adjoint and moreover acting more than $O(N)$ times with this \hat{a} on vacuum $\psi(h)=h^{N / 2} e^{-N h / 2}$ produces non-normalizable state.

Well-behaved approximate perturbative Heisenberg algebra can nevertheless be constructed (arbitrary powers $\hat{a}_{\text {pert }}^{n}$ on vacuum produce normalizable states):

$$
\hat{a}_{\text {pert }}=\sum_{n=0}^{N}(-\hat{b})^{n} \hat{d}+\text { h.c. }
$$

but only up to $O\left(e^{-N}\right)$ minimal algebra error: $\left[\hat{b}, \hat{a}_{\text {pert }}\right]=i\left(1+e^{-N} \hat{O}\right)$. Intuition: probability $P(b>1)$ (exit perturbative regime) is $\sim e^{-N}$.

Bulk QFT reconstruction

- First step: reconstruction perturbative QFT Heisenberg algebra $\left[\beta^{\prime}, \alpha_{J}\right] \propto i \delta_{J}^{\prime} \rightsquigarrow$ definition α_{J} on \mathscr{H} ? i.e. expression in terms of operators Q_{x}^{α} and $P_{\alpha}^{\alpha}=-i \partial_{Q_{x}^{\alpha}}$?
- $D+\beta=Q Q^{T}>0 \Rightarrow$ Exact Heisenberg algebra cannot be realized.
- Perturbative construction exists realizing approximate Heisenberg algebra up to error $>O\left(e^{-N}\right)$, upon coarse-graining to effective spatial resolution $K_{\text {eff }}<O(N)$ "pixels".

Underlying reason: error \sim probability of fluctuation exiting perturbative regime. This probability is always $>O\left(e^{-N}\right)$, and becomes $O(1)$ if resolution $>O(N)$ pixels.

Can be made precise using Tracy-Widom distribution largest eigenvalue Wishart random matrix.

- Global breakdown of perturbative bulk QFT appears to violate assumptions of certain dS no-go theorems [Susskind,Kleban et al]

Physical Hilbert space and observables

- $\mathscr{H}_{\text {phys }}=$ states invariant under $\mathrm{O}(2 \mathrm{~N})$ and \mathcal{G} (hs group). In generalized toy model with K spatial points, $\mathcal{G}_{K}=O(K)$. One possible definition of \mathcal{G} in continuum limit is simply $\mathcal{G}=\lim _{K \rightarrow \infty} \mathcal{G}_{K}$.
- Physical observables $=$ operators invariant under $\mathrm{O}(2 \mathrm{~N})$ and \mathcal{G}.
- Basis of algebra of invariant operators:

$$
T_{n} \equiv \operatorname{Tr} H^{n}=\operatorname{Tr} M^{n}, \quad H_{x}^{y} \equiv Q_{x}^{\alpha} Q_{\alpha}^{y}, \quad M_{\beta}^{\alpha} \equiv Q_{x}^{\alpha} Q_{\beta}^{x}
$$

- \Rightarrow All expectation values of physical observables can be computed by $2 N \times 2 N$ matrix model of symmetric real matrices M, with gauged $O(2 N)$ symmetry \Rightarrow reduction to 2 N physical d.o.f.
- Concrete implementation of "group averaging" construction of physical observables by taking continuum limit of discretized model.

Ongoing work and outlook

- Generalizations? (some progress, some puzzles)
- Local bulk physics? (issues in common with AdS + more)
- Entropy? (Although some work remains to be done, there seem to be no insuperable obstacles to a precise identification and microscopic derivation of the de Sitter entropy within this framework.)
- Less deslusionally optimistic assessment: some obstacles seem still quite serious, in particular identification of entropy. More abstract quantum information theoretic approach may be required to overcome these.

