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Effective Lagrangian for a Higgs doublet

16 operators
(12 CP even, 4 CP odd)

Best operator basis to test light composite Higgs
Giudice, Grojean, Pomarol, Rattazzi  JHEP 0706 (2007) 045

L = LSM +
X

i

c̄iOi � LSM +�LSILH +�Lcc +�Ldipole +�LV ++�L4�

Buchmuller and Wyler NPB 268 (1986) 621

...

Grzadkowski et al. JHEP 1010 (2010) 085
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Effective Lagrangian for a Higgs doublet

6 current-current operators

L = LSM +
X

i

c̄iOi � LSM +�LSILH +�Lcc +�Ldipole +�LV ++�L4�

Buchmuller and Wyler NPB 268 (1986) 621

...

Grzadkowski et al. JHEP 1010 (2010) 085
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Effective Lagrangian for a Higgs doublet

8 dipole operators

L = LSM +
X

i

c̄iOi � LSM +�LSILH +�Lcc +�Ldipole +�LV ++�L4�

Buchmuller and Wyler NPB 268 (1986) 621

...

Grzadkowski et al. JHEP 1010 (2010) 085
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Effective Lagrangian for a Higgs doublet

7 operators built with gauge fields only
(5 CP even, 2 CP odd)

22 four-fermion operators

Buchmuller and Wyler NPB 268 (1986) 621

...

Grzadkowski et al. JHEP 1010 (2010) 085

In total:   59  dim-6 operators for 1 SM family

For a review see:  RC, Ghezzi, Grojean, Muhlleitner, Spira JHEP 07 (2013) 035
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Processes with 0, 1, 2, ... Higgses related

Q: Which operators are already constrained by experiments w/o Higgs ?

In total:   59  dim-6 operators

17  involve the Higgs

8  affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151
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Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151

shifts all Higgs couplings

shift

modify inclusive rates 
(constrained by fit to 
Higgs couplings)
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Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151

modify inclusive rates 
(constrained by fit to 
Higgs couplings)

h ! ��

h ! Z�

gg ! h
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Operators that affect Higgs physics only

modify also differential 
rates, can be probed by:

decays h→WW*, h→ZZ* ( angular distributions)─

single-Higgs production via VBF─

Higgs associated production hV (Higgs pT, 
mVh, and angular distributions) 

─
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Figure 5. Invariant-mass mV h distribution of a two-body system comprised of a Higgs boson
and a gauge boson for LHC collisions at a center-of-mass energy of 14 TeV. We show results
for the Standard Model (red-solid histogram) to which we superimpose predictions computed when
c̄HW = 0.1 (blue-dotted line) and c̄W = 0.1 (black-solid line) couplings are allowed.

We show the dependence of R on the coe⇤cient of c̄HW which turns out to be quite steep

when c̄HW is of order O(0.1) or smaller, and smoother for larger (absolute) values of this

Wilson coe⇤cient. The results however largely depend on the selection requirements (on

the final state lepton and missing transverse energy) of the corresponding analysis that

could further accentuate the e�ect of the e�ective operator.

4.2.2 Invariant mass of a two-body system constituted of a Higgs boson and

a gauge boson

The kinematical properties of the system formed by the massive vector boson V and the

Higgs boson hmay be modified by the presence in the Lagrangian of non-standard operators

such as those introduced in Section 2.1. In this context, one interesting observable consists

of the invariant-mass distribution of the V h-system [31], as illustrated in Figure 5 for

proton-proton collisions at a center-of-mass energy of 14 TeV. We present in this figure

invariant-mass mV h spectra computed at the parton-level, i.e., without accounting for

gauge-boson and Higgs-boson decays, and compare the Standard Model predictions (red-

solid histogram) to results including first new physics e�ects induced by a non-zero c̄W = 0.1

parameter (black-solid line) and second by a non-zero c̄HW = 0.1 parameter (blue-dotted

line). While the Standard Model expectation steeply falls for invariant mass larger than

500 GeV�600 GeV, beyond the Standard Model results exhibit a tail extending up to

much larger mV h values around the TeV scale. New operators indeed contribute to this

process with di�erent kinematics, favoring configurations with larger four-momentum. This

example therefore demonstrates the powerful usage of such an observable for unraveling

new physics in the Higgs sector.

– 22 –

Alloul, Fuks, Sanz  arXiv:1310.5150

c̄W =0.1

c̄HW =0.1

SM
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Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151

modifies pT spectrum of

[ top loop vs point-like interaction ]

vsh h

Azatov, Paul  JHEP 1401 (2014) 014

Grojean, Salvioni, Schlaffer, Weiler  JHEP 1405 (2014) 022
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Operators that affect Higgs physics only Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151

yet un-probed



Renormalization of EFT



• Loops of light (SM) particles induce the RG 
flow (and mixing) of the coefficients
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RG evolution of coefficients
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RG 
evolution
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(exp’s done here)

Elias-Miró et al. JHEP 1308 (2013) 033; JHEP 1311 (2013) 066 
Jenkins et al. JHEP 1310 (2013) 087; JHEP 1401 (2014) 035 
Alonso et al. JHEP 1404 (2014) 159

m⇤• No big hierarchy between      and EW scale, 1-loop 
corrections to SMEFT are generally small



• Knowledge of the RG running is however needed when it comes 
to make assumptions on the coefficients at the scale        (ex: to 
simplify the analysis by neglecting some of the operators)

m⇤

m⇤

Do we need to go beyond tree level ?
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1-loop effects important if:

Some loosely bound coefficients appears in a 
precisely measured observable at 1-loop level

[in setting limits]

A larger coefficient renormalizes a smaller one 
(for a given power counting).  RG effects can 
be sizeable if UV dynamics is strongly coupled 

[in constraining physics at      ]

• The bulk of the 1-loop effect (RG running) can be effectively 
included by setting limits on the value of the coefficients at the 
low-energy scale

Ex:          inc̄t gg ! h
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)
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�c̄W+B

c̄W+B
⇠ g2⇤

16�2
log

✓
m⇤
µ

◆c̄W (m⇤), cB(m⇤) ⇠
m2

W

m2
⇤

c̄H(m⇤) ⇠
v2g2⇤
m2

⇤
=

m2
W

m2
⇤

g2⇤
g2

1-loop correction can be large if the UV 
dynamics is strongly-interacting (     large)g⇤



c̄T OT =
1

2v2
��H† !D�H

��2

c̄T (m⇤) = 0

c̄T (mZ) ⇠
v2

f2
⇥ g02

16�2
log

✓
m⇤
mZ

◆

 18

RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

2. Running of

Small but leading effect if        
due to custodial invariance
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Fit to effective coefficients
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EFT fit to experimental data

• Possible effective strategy: Organize data (and group operators) according to 
how strongly they constrain the effective coefficients

observables precision

input observables (GF, αem, mZ), EDMs, (g-2) better than 10-3

Z-pole observables at LEP1, W mass 10-3

TGC (LEP2) 10-2

Higgs physics (LHC) 10-1

Pomarol, Riva  JHEP 1401 (2014) 151

• Global fit:

Ellis, Murphy, Sanz, You  arXiv:1803.0352
De Blas et at. arXiv:1710.05402

Two approaches:

More appropriate as LHC data becomes more and 
more sensitive



from: Ellis, Murphy, Sanz, You  
arXiv:1803.0352

Results:Coe�cient Central value 1-�

C̄dH 0.33 0.15

C̄eH 0.06 0.10

C̄G 0.09 0.06

C̄HB 0.003 0.005

C̄H⇤ 0.50 0.27

C̄Hd -0.036 0.017

C̄HD -0.001 0.014

C̄He 0.002 0.007

C̄HG 0.0002 0.0003

C̄
(1)

H`
0.002 0.003

C̄
(3)

H`
-0.015 0.011

C̄
(1)

Hq
-0.002 0.003

C̄
(3)

Hq
-0.017 0.013

C̄Hu 0.000 0.011

C̄HW -0.002 0.014

C̄HWB 0.006 0.007

C̄`` -0.009 0.006

C̄uG 0.7 0.4

C̄uH -4.8 2.6

C̄W -0.05 0.06

Coe�cient Central value 1-�

c̄3G 0.005 0.003

c̄3W -0.018 0.023

c̄d 0.36 0.15

c̄e 0.09 0.11

c̄g 0.00002 0.00002

c̄H -1.1 0.6

c̄HB -0.013 0.018

c̄Hd -0.035 0.017

c̄He 0.007 0.013

c̄Hq -0.003 0.004

c̄
0
Hq

-0.003 0.003

c̄Hu -0.03 0.013

c̄HW 0.002 0.014

c̄`` -0.009 0.006

c̄T 0.005 0.013

c̄u -4.7 2.6

c̄uG 0.031 0.016

c̄W � c̄B -0.04 0.04

c̄W + c̄B 0.003 0.024

c̄� -0.001 0.0006

Table 4: Numerical results of a global fit to all data, marginalizing over all coe�cients,

evaluated in the Warsaw (left) and SILH (right) bases.

LEP data, see Table 5. As expected, the operator c̄T is correlated with the combination of

operators c̄W + c̄B, as they both contribute to oblique corrections to the SM couplings 10.

10 Numerical values of the correlation coe�cients are available from https://quark.phy.bnl.gov/

Digital Data Archive/SMEFT GlobalFit/.
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Q:   What do the derived limits on       imply on the scale     of NP ?c(6)i ⇤

A:   estimate of     depends on the kind of UV dynamics⇤☞



At the SM point (          ) we can 
extrapolate up to 

With current knowledge of the Higgs couplings 
(                       ) we can extrapolate so much
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How far can can we extrapolate weakly our theory
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Higher-derivative operators 
imply strong coupling scale
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Validity of SMEFT at colliders
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Le� � c(6) (ē��PL⇥e)(⇥̄µ��PLµ) + h.c. c(6) = � g2

2m2
W

c(6) ⇠ g2/m2
W

µ

e
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⌫e
mµ 1.5TeV

g⇠10�3 g=4�
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Example:  Fermi theory 

Muon decay measures “new physics” scale      mW

not directly accessible

e

⌫µ µ

Estimating the scale at which NP shows up (e.g. in neutrino 
scattering) requires making an assumption on the coupling

Assessing the validity of the EFT analysis also 
requires making assumptions of the UV dynamics

☞



⇤
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• EFT best suited to fixed-energy, high-precision experiments (ex: LEP, flavor)

E

fixed 
energy

large gap of scales requires RG to re-sum large logs

LHC not ideal for an EFT approach



EFT fails when max probed energy          is equal or bigger than physical scale  Emax ⇤

Emax

 26

• EFT best suited to fixed-energy, high-precision experiments (ex: LEP, flavor)

E

energy range

• less suited to low-precision experiments probing an energy range 
(ex: LHC, hadron machines in general)

⇤

LHC not ideal for an EFT approach

One can check a posteriori, but needs to know☞



OHW = DµH
†Wµ�D�H

OHB = DµH
†Bµ�D�H

O3W = Tr(Wµ�W
�⇥Wµ

⇥ )

p
s ⇠ 200GeV

VLVL

VTVT
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TGC measurements: LEP vs LHC

Three dim-6 operators affect TGC

• LEP2 operated in a narrow range of 
com energies

• LHC spans a wide energy interval

sensitivity on NP 
mainly comes from 

bins at large energy

ATLAS-CONF-2016-043



� = �SM (1 + ciAi + cicjBij)
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Figure 2: Results of the TGV analysis in terms of two-dimensional profile likelihoods from LHC Run I and from LEP [35]. We

also show the statistical combination of both.

semileptonic measurements are still based on the 7 TeV smaller data sets. An update of the semileptonic channels

should significantly contribute to a global TGV analysis.

The one-dimensional 95% CL constraints on the combination of Wilson coe⌅cients are

fW
⇥2

⇥ [�1.5, 6.3 ] TeV�2 fB
⇥2

⇥ [�14.3, 15.9 ] TeV�2 fWWW

⇥2
⇥ [�2.4, 3.2 ] TeV�2 . (3.1)

The same results can also be expressed as

⇥⇧
|fW |

> 0.82 (0.40) TeV
⇥⇧
|fB |

> 0.26 (0.25) TeV
⇥⇧

|fWWW |
> 0.65 (0.56) TeV , (3.2)

where the bounds stand for the limits obtained assuming a negative (positive) Wilson coe⌅cient. Moreover, we can

present our results in terms of three independent TGV couplings [18], as described in Sec. II, the 95% CL constraints

then read

�gZ1 ⇥ [�0.006, 0.026 ] ��� ⇥ [�0.041, 0.072 ] ⇥�,Z ⇥ [�0.0098, 0.013 ] . (3.3)

One aspect that we have tested is how robust our results are when we change our approximate treatment of fully

correlated theoretical uncertainties. It turns out that removing these correlations slightly shifts the fW range towards

negative values and weaken the bound on fB ; both e⇤ects are at the level of less than 0.5 standard deviations.

To allow for an easy presentation of the approximate fit results we perform a Gaussian fit to the multi-dimensional

probability distribution function of the three Wilson coe⌅cients relevant for TGVs. For the mean, one standard

deviation and the error correlation matrix we find

fW
⇥2

= (2.2± 1.9) TeV�2 fB
⇥2

= (3.0± 8.4) TeV�2 fWWW

⇥2
= (0.55± 1.4) TeV�2

⇤ =

�

⇤
1.00 �0.012 �0.062

�0.012 1.00 �0.0012
�0.062 �0.0012 1.00

⇥

⌅ . (3.4)

The corresponding Gaussian fit results to the multi-dimensional probability distribution function for the TGV cou-

plings in Eq. 2.5 are shown in Table I.

3. Comparison and combination with LEP

When we express our results in terms of the TGVs defined in Eq. (2.5) we can easily compare them and eventually

combine them with the global LEP analysis results [35]. We show the separated LHC Run I and LEP limits in

cHB [TeV�2]

c3W
[TeV�2]

Fit to TGCs 

1-dimensional 95% CL constraints 

LEP fit dominated by (D=6) linear terms

cHW 2 [�1.5, 6.3] TeV�2

cHB 2 [�14.3, 15.9] TeV�2

c3W 2 [�2.4, 3.2] TeV�2

LHC fit dominated by (D=6)2 terms

cHW 2 [�7.6, 19] TeV�2

cHB 2 [�67, 1.8] TeV�2

c3W 2 [�32, 3.3] TeV�2

Butter et al. JHEP 1607 (2016) 152

see also: 
Falkowski et al. JHEP 1702 (2017) 115 
Franceschini et al. JHEP 1802 (2018) 111
Liu and L.T. Wang arXiv:1804.08688
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Figure 2: Results of the TGV analysis in terms of two-dimensional profile likelihoods from LHC Run I and from LEP [35]. We

also show the statistical combination of both.

semileptonic measurements are still based on the 7 TeV smaller data sets. An update of the semileptonic channels

should significantly contribute to a global TGV analysis.

The one-dimensional 95% CL constraints on the combination of Wilson coe⌅cients are

fW
⇥2

⇥ [�1.5, 6.3 ] TeV�2 fB
⇥2

⇥ [�14.3, 15.9 ] TeV�2 fWWW

⇥2
⇥ [�2.4, 3.2 ] TeV�2 . (3.1)

The same results can also be expressed as

⇥⇧
|fW |

> 0.82 (0.40) TeV
⇥⇧
|fB |

> 0.26 (0.25) TeV
⇥⇧

|fWWW |
> 0.65 (0.56) TeV , (3.2)

where the bounds stand for the limits obtained assuming a negative (positive) Wilson coe⌅cient. Moreover, we can

present our results in terms of three independent TGV couplings [18], as described in Sec. II, the 95% CL constraints

then read

�gZ1 ⇥ [�0.006, 0.026 ] ��� ⇥ [�0.041, 0.072 ] ⇥�,Z ⇥ [�0.0098, 0.013 ] . (3.3)

One aspect that we have tested is how robust our results are when we change our approximate treatment of fully

correlated theoretical uncertainties. It turns out that removing these correlations slightly shifts the fW range towards

negative values and weaken the bound on fB ; both e⇤ects are at the level of less than 0.5 standard deviations.

To allow for an easy presentation of the approximate fit results we perform a Gaussian fit to the multi-dimensional

probability distribution function of the three Wilson coe⌅cients relevant for TGVs. For the mean, one standard

deviation and the error correlation matrix we find

fW
⇥2

= (2.2± 1.9) TeV�2 fB
⇥2

= (3.0± 8.4) TeV�2 fWWW

⇥2
= (0.55± 1.4) TeV�2

⇤ =

�

⇤
1.00 �0.012 �0.062

�0.012 1.00 �0.0012
�0.062 �0.0012 1.00

⇥

⌅ . (3.4)

The corresponding Gaussian fit results to the multi-dimensional probability distribution function for the TGV cou-

plings in Eq. 2.5 are shown in Table I.

3. Comparison and combination with LEP

When we express our results in terms of the TGVs defined in Eq. (2.5) we can easily compare them and eventually

combine them with the global LEP analysis results [35]. We show the separated LHC Run I and LEP limits in

cHB [TeV�2]

c3W
[TeV�2]

Fit to TGCs 

LEP

cHW 2 [�1.5, 6.3] TeV�2

cHB 2 [�14.3, 15.9] TeV�2

c3W 2 [�2.4, 3.2] TeV�2

LHC

cHW 2 [�7.6, 19] TeV�2

cHB 2 [�67, 1.8] TeV�2

c3W 2 [�32, 3.3] TeV�2

Butter et al. JHEP 1607 (2016) 152

-        slightly more constrained

Naively:

- LHC constraints stronger than LEP ones

1-dimensional 95% CL constraints 

see also: 
Falkowski et al. JHEP 1702 (2017) 115 
Franceschini et al. JHEP 1802 (2018) 111
Liu and L.T. Wang arXiv:1804.08688
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LEP

cHW 2 [�1.5, 6.3] TeV�2

cHB 2 [�14.3, 15.9] TeV�2

c3W 2 [�2.4, 3.2] TeV�2

LHC

cHW 2 [�7.6, 19] TeV�2

cHB 2 [�67, 1.8] TeV�2

c3W 2 [�32, 3.3] TeV�2

Estimating the cutoff scale through SILH power counting (1 coupling, 1 scale):
[Giudice et al. JHEP 0706 (2007) 045] 

cHW,HB ⇠ g

�2

✓
g2⇤

16�2

◆

1-dimensional 95% CL constraints 
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LEP

cHW 2 [�1.5, 6.3] TeV�2

cHB 2 [�14.3, 15.9] TeV�2

c3W 2 [�2.4, 3.2] TeV�2

LHC

cHW 2 [�7.6, 19] TeV�2

cHB 2 [�67, 1.8] TeV�2

c3W 2 [�32, 3.3] TeV�2

Estimating the cutoff scale through SILH power counting (1 coupling, 1 scale):
[Giudice et al. JHEP 0706 (2007) 045] 

EFT does not quite work, 
unless the power counting 

is different

Strong dipolar interactions
[ Liu, Pomarol, Rattazzi, Riva  JHEP 1611 (2016) 141]

for example

95% CL at the LHC

c3W ⇠ g

�2

✓
g2

16�2

◆
cHW,HB ⇠ g

�2

✓
g2⇤

16�2

◆

1-dimensional 95% CL constraints 



Ex:                         scattering

�⇤

⇤
⇠ c3W

g
E2 ⇠ g2

16⇥2

E2

�2

�(LL ! LL) ⇠ g4SM
E2

h
1 +

g2⇤
g2SM

E2

�2

| {z }
BSM6⇥ SM

+
g4⇤
g4SM

E4

�4

| {z }
BSM6

2

+ ...
i
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Linear vs Quadratic

Notice: Dominance of linear terms (over quadratic ones) is per se neither 
sufficient nor necessary a condition for the EFT to be valid 

Not sufficient Ex:  TGC at LEP2✗

Not necessary✗

small

large

O6 = (H�H)2

��� ����
���� ��

���� ����

� �� Λ

���

�π
����

�

� *

����

g⇤

⇤ g/g⇤ < E < ⇤

c(6)⇠ g2⇤
⇤2

BSM dominates over SM 
for

NLO correction 
from dim6-SM 

close to threshold

VLVL ! VLVL



- at tree-level in the massless 
(high-energy) limit

h(A) =
X

i

hi

h(A)
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Non-interference from helicity selection rules

dim-6 and SM interfere only if they 
contribute to the same helicity amplitude 
(the total helicity         must be the same)

2

A4 |h(ASM
4 )| |h(ABSM

4 )|
V V V V 0 4,2

V V �� 0 2

V V ⇥⇥ 0 2

V ⇥⇥� 0 2

⇥⇥⇥⇥ 2,0 2,0

⇥⇥�� 0 0

���� 0 0

TABLE I: Total helicity h(A4) of SM and BSM contribu-
tions to the 4-point amplitude of the process A4. V = V ±,
⇥ = ⇥± and � denote, respectively, transversely-polarized
vectors, fermions (or antifermions) and scalars (includ-
ing the longitudinal polarizations of gauge bosons) in the
SM. For processes with at least one transversely-polarized
vector (listed above the double line in the table), SM and
BSM contributions do not interfere in the massless limit
because have di�erent total helicity.

vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure of
scattering amplitudes at tree-level, in the SM and at
leading order in the e�ective field theory expansion,
i.e. at the level of D=6 operators. We will denote
the corresponding new-physics contribution as BSM6

in the following. We focus first on the phenomeno-
logically relevant case of 2 ⌅ 2 scatterings and work
in the massless limit; the massive case and higher-
points amplitudes are discussed below. We use the
formalism of spinor helicities, where the fundamen-
tal objects entering scattering amplitudes are Weyl
spinors ⇤� and ⇤̄�̇, transforming as (1/2, 0) (undot-
ted indices) and (0, 1/2) (dotted indices) represen-
tations of SU(2) ⇥ SU(2) ⇧ SO(3, 1), and Lorentz
vectors Aµ⇥

µ
��̇, transforming as (1/2, 1/2). 2 In this

language, the field strength is written as

Fµ⌅⇥
µ
��̇⇥

⌅
⇥⇥̇

⇤ F�⇥ �̄�̇⇥̇ + F̄�̇⇥̇��⇥ (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

Our analysis will be in terms of complex momenta
p ⌃ C: this allows us to make sense of 3-point ampli-

2 We will not distinguish between fermions and anti-fermions
except where explicitly mentioned, as this distinction is not
crucial to our analysis. We will denote a Weyl fermion or
anti-fermion of helicity + (�) with �+ (��). When indi-
cating a scattering amplitude, the symbol � will stand for
either �+ or ��.

Am Am0

± ⇥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see for example Refs. [9–11] for a
review. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m��2 = n, see Fig. 1. The
helicity of an on-shell amplitude, h(A), is defined as
the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e�ective theory
this relation fails if the contribution of a derivative
operator to the vertices attached to the intermediate
line vanish on shell. In this case the pole from the
propagator is canceled by the vertices, and factoriza-
tion does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of others with more fields. We will discuss be-
low how this complication is avoided.

2. Dimensional analysis, together with Little group
scaling and their special kinematics, fixes the form
of the 3-point amplitudes, and in particular relates
their total helicity h(A3) to the dimensionality of the
coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge vertex of the SM is
characterized by the dimensionless weak coupling g,
and consequently has |h| = 1. The D =6 operator
O3W = tr(Wµ⌅W ⌅

⇧ W
⇧µ) instead appears in Eq. (1)

.
. .

No interference for 
4-point amplitudes 
with at least one 
transverse boson

Validity:

- only dim-6 operators

- only 4-point amplitudes

E�mW

[ Azatov, RC, Machado, Riva  PRD 92 (2015) 035001]

Further challenge to EFT:



• Finite-mass effects arise at                    and can be determined by considering 
higher-point amplitudes with Higgs vevs

O(�S/⇥)
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Beyond the leading approximation

• Non-interference in general fails for higher-point amplitudes and at the 1-loop level

Leading effect arises at                from real emissions (for inclusive processes) and 
1-loop virtual corrections (pure EW corrections similar but smaller)

No log enhancement in the interference due to soft and collinear singularities in real 
emissions or IR divergences in 1-loop diagrams [ see: Dixon and Shadmi  NPB 423 (1994) 3]

SM: A6(⇥
+⇥�V +V +��) BSM6: A6(�

+��V +V +)

h�i
Ex:

h�i

+

+

F 3

-

+ +

+-

+

O(m2
W,t/E

2)



• radiative corrections subdominant compared to mass effects except at very high 
energies

Max gain in sensitivity                    (at the cost of a reduced           )

• Accessing the               corrections from D=6 operators without relative suppression 
is possible by considering            processes (i.e.             plus extra jet)

Fermion mass insertions usually subdominant except for 
top quarks (e.g.       interferes at           in              )F 3 gg ! tt̄O(�2F )

E & mW

p
4⇥/�S ⇠ 1TeV

O(1/�2)

S/B⇠
p
4⇥/�S

2 ! 22 ! 3
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ex:   constraining       through 3-jet eventsF 3 [ Dixon and Shadmi  NPB 423 (1994) 3]



Example:                              (           )VLVL ! VTVT T = ±

��� ����
�

���� ����

���� ����
�

���� ����

��� ��

� �� Λ�� Λ

���

�π
����

�

� *

����
O8 = F 2

µ�H
†HD2

O6 = F 2
µ�H

†H
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g⇤

dim8-SM gives dominant 
correction at small coupling

c(6)⇠ g2⇤
⇤2

c(8)⇠ g2⇤
⇤4

precocious 
onset of dim62

Implications of non-interference

�(LL ! TT ) ⇠ g4SM
E2

h
1 +

g2⇤
g2SM

m2
W

�2

| {z }
BSM6 ⇥ SM

+
g4⇤
g4SM

E4

�4

| {z }
BSM6

2

+
g2⇤
g2SM

E4

�4

| {z }
BSM8 ⇥ SM

+ ...
i



Avoiding non-interference by exclusive processes
Panico, Riva and Wulzer, PLB 776 (2018) 473

Azatov, Elias-Miro, Reyimuaji, Venturini JHEP 1710 (2017) 027

• Vector bosons not asymptotic states, decay to fermions

• Interference arises in scattering amplitudes at fixed 
azimuthal angles 

Averaging over azimuthal angles washes out the 
interference 



              controls the size of 
the tolerated error due to 
higher-derivative operators

      Results should be reported as functions of          = max characteristic energy scale

c(6)i

c(6)i < �expi (Mcut)

Mcut

c(6)i =
c̃(6)i (g⇤)

�2
< �expi (⇥�)

c(6)i =
c̃(6)i (g⇤)

�2

⇤
Mcut= ��

0<�<1

Mcut = ��
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Strategy for a consistent EFT analysis of data

1.    Fit of coefficients        can be done model independently

2.    Interpretation of results require assumptions on UV dynamics

      power counting

3.    Consistent (though conservative) limits through restriction of dataset:   set

limits on scale     set by 
using data up to

[ RC, Falkowski, Goertz, Grojean, Riva  JHEP 1607 (2016) 144 ]



1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

MV[TeV]

g*

� = 0.5

 = 1

ud̄ ! W+h

L � igHV i

µ
H†⇥i

⇥⇤
DµH + gqV

i

µ
q̄L�µ⇥

iqL

�gq=gH =g⇤

W+

h

u

d̄

OH� = i q̄L�µ⇥
aqL(H

†⇥a !Dµ H)

cH� = �gHgq
M2

V
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Example of idealized measurement:

As an illustration of our discussion of setting limits on the EFT parameters and estimating

the associated theoretical errors, consider the following example of an idealized measurement.

Suppose an experiment makes the following measurement of the ⇤(ud̄ ⌃ W+h) cross section

at di�erent values of MWh:

MWh[TeV] 0.5 1 1.5 2 2.5 3

⇤/⇤SM 1± 1.2 1± 1.0 1± 0.8 1± 1.2 1± 1.6 1± 3.0

This is meant to be a simple proxy for more realistic measurements at the LHC, for

example measurements of a fiducial ⇤(pp ⌃ W+h) cross section in several bins of MWh. For

simplicity, we assume that the errors are Gaussian and uncorrelated. These measurements can

be recast as constraints on D=6 EFT parameters for di�erent value of Mcut, identified in this

case with the maximum MWh bin included in the analysis. For simplicity, in this discussion

we only include �gWq
L ⇤ [�gZu

L ]11 � [�gZd
L ]11 and ignore other EFT parameters (in general, a

likelihood function in the multi-dimensional space of the EFT parameters should be quoted

by experiments). Then the “measured” cross section is related to the EFT parameters by

⇤

⇤SM
⌅

�
1 + 160 �gWq

L

M2
Wh

TeV2

⇥2

. (4.3)

Using this formula, one can recast the measurements of the cross section as confidence intervals

on �gWq
L . Combining the MWh bins up to Mcut, one finds the following 95% confidence

intervals:

Mcut[TeV] 0.5 1 1.5 2 2.5 3

�gWq
L ⇥ 103 [-70, 20] [-16,4] [-7,1.6] [-4.1,1.1] [-2.7,0.8] [-2.2,0.7]

Suppose these constraints are the result of an experimental analysis. A theorist may try

to interpret them as constraints on the vector resonance model with �gq = gH ⇤ g� using

the map in Eq. (4.2). The larger Mcut is, the stronger the limit on g� will be for a fixed MV .

For instance, by using the limits from the full dataset, Mcut = 3 TeV, one would obtain the

constraint on g� given by the dashed red line in Fig. 2. For large MV this approximates well

the limits obtained by fitting the full BSM model to the same dataset (solid red line). In other

words, for MV ⇧ 3 TeV the theory error of the EFT is well under control, see the right panel

in Fig. 1. However, the di�erence between the EFT and the true BSM limits increases as

MV decreases. For MV . 3.5 TeV, as the resonance enters the experimental reach, the EFT

limits have little to do with the true limits on the BSM theory; in other words the theory error

explodes. However, it is still possible to obtain useful EFT limits in the low MV regime if the

experimental results are quoted as a function on Mcut. In that case, for a given MV , one can

set a limit on g� using the data up to Mcut = ⇥MV , as in Eq. (2.2). The exclusion obtained

by such a procedure with ⇥ = 0.5(1) is given by the dark (light) blue region in Fig. 2. Clearly,

for MV ⇧ 3 TeV this procedure coincides with the usual EFT limit setting. On the other

hand, for MV . 3.5 TeV it returns a consistent, though conservative limit on the resonance

15

simplified model of 
spin-1 resonance

95% C.L. limits

inclusive EFT 
analysis

Recast with SILH power counting:

Model of heavy spin-1:



Beyond dim-6 operators



(     = weak spurion breaking the shift symmetry)

Og = H†H Ga
µ�G

aµ� OgD0 = (D⇤H
†D⇤H)Ga

µ⇥G
aµ⇥

OgD2 = (�µ⇥D⇤H
†D⇤H � 4DµH†D⇥H)Ga

µ�G
a�
⇥

c(6) ⇠ g2s
16⇥2

�2

�2

� c(8) ⇠ g2s
16�2

g2⇤
�4

A(gg ! hh) ⇠ g2s
16⇥2

✓
y2t + �2 E2

�2
+ g2⇤

E4

�4
+ . . .

◆

�f < E < ⇤
 41

dim-8 dominate 
over dim-6 for:

Example:    Double Higgs production via gluon fusion (assuming Higgs is a pNGB)

violates the shift (Goldstone) symmetry

dim-6 dim-8
SM

Notice: strong 
coupling    
appears only at 
the dim-8 level

g⇤

[ Azatov, RC, Panico, Son   PRD 92 (2015) 035001 ]

• D=8 operators can become important in special cases if D=6 
ones are suppressed by symmetries or selection rules



Probing dim-8 operators 
is very difficult (perhaps 
impossible) at the LHC

g⇤= 3

⇠ 1.3TeV ⇠ 2.3TeV

Largest value
of m(hh)[GeV] bb̄�� 4b
p
s = 14TeV 550 1550

p
s = 100TeV 1350 4300

⇠ 500GeV ⇤
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E

�f f
p
ytg⇤

dim-8 > dim-6
dim-8 > SM

double Higgs production has a very low rate, dim-8 
are unobservable at the LHC unless bigger than SM

In practice:

(v2/f2) = 0.1

� = ytExample:

- requiring at least 5 events 
- including 10% efficiency

due to kinematic cuts

For a luminosity:                   L = 3ab�1


