

• LHC has all it needs to be a SUSY discovery machine

- can produce full spectra of particles
- can observe many final states for any particle
- Practical limitations (e.g., trigger) should come into consideration when designing the analysis
- Data control samples are a key ingredient (a 100% MC-based background prediction would not be considered acceptable at LHC)
- Statistical tools in place from Higgs discovery
- Simplified models great guidance to interpret and improve searches, when taken with a grain of salt

2

European Research

• Before the LHC, searches were entered on full models

• This changed during Run I. Simplified models became the standard

• Focus on a specific process x decay chain

• Interpret the analysis in this context

- At the beginning of the LHC, many pre-LHC-data analyses were actually found to be too much tailored on the benchmark models
- Simplified models allowed to go beyond certain implicit assumptions
- This new paradigm allowed to discover weakness in the search program and design a nextgeneration set of analyses
- In general, the use of simplified models made our search strategy more robust

• BRs are usually assumed to be 100%. This means that every line in a summary plot is implicitly excluding the others

• Cross sections are sometimes computed under special assumptions (e.g., decoupling limit) and don't hold in general

6

MND THE HIDDEN ASSUMPTIONS

BR-independent results

1ike Natural SUSY

worst result

GOING BEYOND ASSUMPTION

BR-independent results

1ike Natural SUSY

worst result

GOING BEYOND ASSUMPTION

• Lecture 1: SETTING UP A SEARCH AT THE LHC

- Designing a search: Simplified Models
- tools

• Lecture 2: R-PARITY **CONSERVING SUSY**

- DM direct production
- DM cascade production

• Searching for SUSY in practice: strategy, trigger, reconstruction

• Building a search: signal region, control regions, statistics

• Lecture 3: BEYOND MET-BASED SEARCHES RPV SUSY • Displaced particles

• The problem with SUSY is that it predict proton to decay, on which we have strong limits

R-PARITY AND STABLE PARHCLES

10

• This problem could be circumvented postulating a new quantum number (Rparity) NEW SY FM At pry i Res PARITY ● -1 for SUSY partners $R = (-1)^{3(B-L)+2S}$ 10³⁵ erc

- R-parity is always positive
 (negative) for SM particles (SUSY partners)
- As a consequence, only an
 even number of SUSY particles can be created in proton collisions (R=1)
- When decaying, a SUSY particle (R=-1) has to produce another SUSY particle
- So, the lightest SUSY particle cannot decay:
 - you have a Dark matter candidate for free

HOW R-PARITY SOLVES THE PROBLEM

DARK MATTER DIREGT PRODUCTION

- DM can be produced at the LHC with a process similar to scattering in underground experiments
- But DM is invisible to our detectors, unless something else is produced with DM
- For example, a quark/gluon can be radiated before the collision
- These events look like a single high-pT jet of particles
- Events like this can happen also in the DI Standard Model. One needs to measure the background

- Two protons with same energy collide
- Actually, the collision is between quarks/gluons in the proton. They carry different fractions of the proton momentum
- As a result, there is a momentum imbalance ~ along the beam axes, but not in the transverse plane
- Transverse momenta should then balance. If some particle escaped undetected, the balance will be broken

MISSING TRANSVERSE ENERGY

MISSING TRANSVERSE ENERGY

European

Research Council

• MET is computed summing the transverse momenta of $E_T^{miss} = \left| -\Sigma_i \overrightarrow{p_t^i} \right|$ reconstructed object

resolution

• As for the jet, which objects? This choice determines the

reconstructed object $E_T^{miss} = |-\Sigma_i \overrightarrow{p_t^i}|$

resolution

- MET is computed summing the transverse momenta of
- As for the jet, which objects? This choice determines the

- Energy in crystal calorimeters is collected by photomultipliers in the back
- Due to quantum efficiency (<<1) the collected</p> energy is smaller than the energy of the incoming particle
- An incoming particle can deposit energy directly to the photomultiplier directly.
- The calibration constant (E collected Voltage of the signal E original particle) mistakenly translates this into a large deposit

Annlinet	A			8 🔟 🕫	-	
C Applicat	tions A	ctions	00	s 🍣 🚳 🛙		
<u>*</u>						
File Edit V	/iew Wi	indow	Help			
				Deless	Bus	12412(
	· · · · ·			Delay 3 Oc	Bun	124120
	•	<u> </u>		0.05	Filter	
Summary Vie	ew.	_		Views		
	Cal					Rho Phi
	∵emEt	eta	phi			niio r ni
ECal 89	600.4	1.0	0.9			
🗹 🗖 ECal 156	2.3	3.4	-0.6			
🗷 🗖 ECal 12	1.8	-1.2	1.6			
🗹 🗖 ECal 80	1.2	0.5	2.6			
🖾 🗖 ECal 140	1.0	3.1	-0.8			
🗆 🗖 ECal 147	0.8	3.2	-1.8			
	0.8	-1.3	1.8			
	0.6	4.3	-2.2			
	0.5	-3.4	-2.4			
	0.5	0.1	3.1			
	0.5	3.2	1.0			
🗖 🗖 ECal 130	0.4	2.7	-1.7	(
🗆 🗖 E Cal 90	0.4	1.0	-3.0			
🗆 🗖 ECal 157	0.4	3.4	-0.4			
🗆 🗖 ECal 13	0.4	-1.2	1.7			
🗆 🗖 ЕСај 169	0.4	3.9	-0.1			
ECal 202	0.4	5.0	2.4			
	0.4	-4.3	8.0	41 I K		
	0.3	-4.1	0.8			
	0.3	-1.6	-27			$\langle \rangle$
	0.3	-0.6	2.7 >			
🗆 🗖 ECal 154	0.3	3.4	-1.8			
🗆 🗖 E Cal 85	0.3	0.8	1.0	L IV		
🗆 🗖 ECal 64	0.3	-3.8	-2.8			
🗆 🗖 ECal 100	0.3	2.0	-2.1	1/12		
	0.3	4.1	-0.1			
	0.3	1.6	0.7			
	0.3	-3.2	-0.9			
	0.2	4.5	-0.4			
ECal 23	0.2	-1.9	0.1 👻			
	•					
	Cal					
De <mark>⊘</mark> Je	acks					
Muons			a i i i			
Electrons			i i)			
Vertices						
CSC-segments						
▶ . ■ Ph		١				
🕨 🗾 MI	ET		i)			
🧇 🖇 🔲 Te	erminal			Terminal	🗋 c	msShow: r124120_e

DETECTOR NOISE

<u>Filter example:</u> if the energy in the crystals around have small energy compared to central crystal, then this is (most likely) a spike (Swiss cross filter)

- W bosons are produced in LHC jet
- a lepton and a neutrino
- Sometimes the lepton is not *like monojet*
- of missing the lepton)

- Z bosons are produced in LHC jet
- $\odot \sim 20\%$ of the time the Z decays to a neutrino pair
- $\odot \sim 10\%$ of the time the Z decays to a lepton pair
- We can predict how many events with neutrinos we expect, probability of missing the lepton)

- Events are selected requiring a highenergy jet and large missing transverse energy
- The same selection is applied to events with 1 or 2 leptons
- Simulation is use to connect the samples

- Events are selected ≥ 10⁷ E requiring a high-G G energy jet and large $\sqrt{s} = 8 \text{ TeV}$ missing transverse $\int L dt = 19.5 \text{ fb}^{-1}$ energy 10^{4}
- The same selection is applied to events with 1 or 2 leptons
- Simulation is use to connect the samples

SEARCH STRATEGY

- Events are selected requiring a highenergy jet and large missing transverse energy
- The same selection is applied to events with 1 or 2 leptons
- Simulation is use to connect the samples
- The prediction agrees with the expectation, ie. no signal is found

10' 104 10^{2} 10╞

Events / 25 Ge^v

ata / MC

 In absence of a signal, the result is interpreted as an exclusion limit (at 95% confidence level) on the existence of Dark Matter

• Several scenarios considered, depending on the nature of the mediator (simplified models not directly connected to SUSY)

Research Council

In absence of a signal, ^b_e¹⁰⁰⁰ the result is interpreted as an exclusion limit (at 95% ⁵⁰⁰ confidence level) on the existence of Dark Matter

Several scenarios considered, depending on the nature of the mediator (simplified models not directly connected to SUSY)

• Different mediators give different LHC phenomenology

• Useful to test the assumptions behind the xsec scattering plot (and possibly clarify the situation). Eg W emission tests differences between u and d quarks (hence, neutrons and protons)

• Depending on the nature of the mediator, DM could couple to more than quarks

- Sensitivity at low masses

29

• Within the model-dependent assumptions of these simplified models, one can draw the LHC bounds on the same plane as the underground experiments

• Complementarity with different experiments in different scenarios

pean arch icil

DARK MATTER CASCADE PRODUCTION

The typical signature: a lot of energy seen in the detector, recoiling against a lot of MET

Several variables to quantify this behavior:

 $HT = \sum_{jet} |p_T^{jet}|$ $|MHT| = |\sum_{jet} p_T^{jet}|$ $|MET| = |\sum_{cell} E_T^{cell}|$ $m_{eff} = HT + |MET|$

- The main ingredient to the search is a kinematic plane.
 - MR)
 - A measurement of the unbalancing $(MET, \alpha T, MT2, R)$
- core, using transfer factors from MC
- The searches are repeated for different final states
- Searching for specific signals (e.g. stop production) advanced techniques (e.g. BDT) could be used

- For final states with leptons, situation is similar to monojet (W+jets, tt, ..)
- QCD is an extra problem for all-jets final states
 - when jet pT mismeasured, fake MET arises and event ends in tails of kinematic distributions
 - Need to "measure" the probability of this from data
 - MC statistics usually insufficient → large errors on MC scale factors
 - Often, analytic extrapolation from sidebands used instead

European Research

• We are looking for events

• We measure the sum of their

• This is similar to the

• The presence of two missing

• If we could see all the particles, we could compute

$$m_{\chi_1^+}^2 = m_{\pi}^2 + m_{\chi_1^0}^2 + 2 \left[E_T^{\pi} E_T^{\chi_1^0} \cosh(\Delta \eta) - \mathbf{p}_T^{\pi} \cdot \mathbf{p}_T^{\chi_1^0} \right]$$

 \odot If we could measure pT(X0), but not pz(X0), the best we could do would be

$$m_T^2(\mathbf{p}_T^{\pi}, \mathbf{p}_T^{\chi_1^0}; m_{\chi_1^0}) \equiv m_{\pi^+}^2 + m_{\chi_1^0}^2 + 2(E_T^{\pi} E_T^{\chi_1^0} - \mathbf{p}_T^{\pi} \cdot \mathbf{p}_T^{\chi_1^0})$$

- has an "edge" at m
- that mT<m. This means that max(mT(1), mT(2))<m
- This means that min(mT)<mT(true)<m.
- This defined mT2 as

$$m_{T2}^{2}(\chi) \equiv \min_{\mathbf{q}_{T}^{(1)} + \mathbf{q}_{T}^{(2)} = \mathbf{p}_{T}} \left[\max\left\{ m_{T}^{2}(\mathbf{p}_{T}^{\pi^{(1)}}, \mathbf{q}_{T}^{(1)}; \chi), m_{T}^{2}(\mathbf{p}_{T}^{\pi^{(2)}}, \mathbf{q}_{T}^{(2)}; \chi) \right\} \right]$$

• Since cosh>1, $mT \le m$, the equality holding for both pz(X0)=0. This means that max(mT)

• For each event we have two values of mT (two copies of the same decay). Both are such

• We only know pT(X01) + pT(X02) = ETmiss. A wrong assignment of the missing momenta brakes the mT<m condition. But the condition would hold for the correct assignment.

• **SUSY characterisation:**

• **SUSY search:**

European Research

• Two squarks decaying to quark and LSP. In their rest frames, they are two copies of the same monochromatic decay. In this frame p(q) measures MΔ

$$M_{\Delta} \equiv rac{M_{ ilde{q}}^2 - M_{ ilde{\chi}}^2}{M_{ ilde{q}}} = 2\Lambda$$

- In the lab frame, the two squarks are boosted longitudinally. The LSPs escape detection and the quarks are detected as two jets
- In the rest frame of the two incoming partons, the two squarks recoil one against each other.

THE RAZOR FRAME

 $M_{ ilde{\chi}}\gamma_{\Delta}eta_{\Delta}$

If we could see the LSPs, we could boost back by β_L , β_T , and β_{CM} In this frame, we would then get $|\mathbf{p}_{j1}| = |\mathbf{p}_{j2}|$ Too many missing degrees of freedom to do just this

- In reality, the best we can do is to compensate the missing degrees of freedom with assumptions on the boost direction
 - The parton boost is forced to be longitudinal
 - The squark boost in the CM frame is assumed to be transverse
- We can then determine the two by requiring that the two jets have the same momentum after the transformation
- The transformed momentum defines the MR variable

 $M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$

THE RAZOR FRAME

- 3D momenta
- No information on the MET is used
- estimate of $M\Delta$
- MTR

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss}}{2}}$$

- and it is MET-related
- of the two variables

The "new" variables rely on the dijet+MET final state as a paradigm

- All the analyses have been extended to the case of multijet final states clustering jets in two hemispheres (aka mega-jets)
- Several approaches used

 - minimizing the Lund distance (MT2 CMS)

• …

• Eventually, all this has to be replaced by exclusive jet algorithms (e.g., XCone)

• minimizing the HT difference between the mega-jets (aT CMS) • minimizing the invariant masses of the two jets (Razor CMS) $(E_i - p_i \cos\theta_{ik}) \frac{E_i}{(E_i + E_k)^2} \le (E_j - p_j \cos\theta_{jk}) \frac{E_j}{(E_i + E_k)^2}$

European Research

- For long decay chains with two leptons in cascade, an edge develops in the dilepton invariant mass
 - Can be used to highlight the presence of a signal
 - At same time, allows to characterise the underlying SUSY spectrum
- This is the cleanest possible SUSY signature at the LHC
 - edge position measured with a few GeV uncertainties
 - dilepton final states quite clean from background
 - shape information adds strong kinematic discrimination

DILEPTON EDGE

• At some point, CMS saw an excess with this search

- Regardless of the clean signature, it took 2 years to take out the result (which was then disproved by new data + ATLAS)
- Just because there is also background, signal can be small and life is complicated
- Setablishing a discovery at the LHC which is NOT a more-than-expected resonance has sociological implications that we underestimate

WHERE DO WESTAND?

44

WHERE DO WE STAND? GAUGINOS

WHERE DO WE STAND? SQUARKS

46

• There regions which are complicated to explore

- Or the sector of the
- sensitivity
- One can approach these regions
 - In the observation of the obs objects
 - Indirectly, exploring cascade production (as with DM)

47

• There regions which are complicated to explore

- \odot compressed spectra \rightarrow soft
- sensitivity
- One can approach these regions
 - objects
 - Indirectly, exploring cascade production (as with DM)

erc

48

• This is where a lot of the RunII work went

European

- To probe SUSY models with ~GeV leptons, one has to start from the trigger
 - dedicated L1 and HLT seeds *looking at lepton+jets*
- If this is place, the analysis is quite similar to the others
 - but new backgrounds appear, e.g. QCD (usually negligible in *leptonic final states*
- The challenge will be to keep sensitivity there with HL-LHC (maybe using again the ISR trick?)

SOFT LEPTONS

- To probe SUSY models with ~GeV leptons, one has to start from the 5^{100} 5^{100} 5^{100} 5^{100} 5^{100} 5^{100}
 - dedicated L1 and HLT seeds *looking at lepton+jets*
- If this is place, the analysis is quite similar to the others
 - but new backgrounds appear, e.g. QCD (usually negligible in *leptonic final states*
- The challenge will be to keep sensitivity there with HL-LHC (maybe using again the ISR trick?)

SOFT LEPTONS

One can use cascade production to probe compress spectra:

for example, compressed stop

• when produced directly, difficult to observe soft charm jets

• when produced from gluinos, can see the top quark

Interesting new regime: for very heavy gluinos, the Ws from t (and eventually the full t) could <u>merge into a single heavy jet →</u> substructure

DRECT VS CASCADE PRODUCTION

I open a Parenthesis here to tell you about jet substructure

- QCD)

ET SUBSTRUCTURE

• Several jet-shape variables proposed to quantify this behaviour (see ongoing <u>BOOST conference</u> for a full overview)

N-subjettiness is among the most popular

• Quantify how well the constituents of a jet can be arranged in N subjects

$$\tau_N^{(\beta)} = \frac{1}{p_{TJ}} \sum_{i \in \text{Jet}} p_{Ti} \min\left\{R_{1i}^\beta, R_{2i}^\beta, \dots, R_{Ni}^\beta\right\}$$

J. Thaler and K. Van Tilburg http://arxiv.org/abs/1011.2268

by computing TN it for several N

• A typical tagger would consist of

- A jet grooming procedure (trimming, pruning, soft drop) to remove soft radiation in the jet (and pileup, to some extent)
- A (post-grooming) jet mass cut
- A cut on an appropriate set of
 substructure variables
- For instance, S vs B discrimination in CMS is optimal for di-subjet (W/Z/H) when $\tau 2/\tau 1$ ratio is considered

CMS-PAS-JME-13-006

• One can imagine a jet as an image impressed by energy deposits on calorimeters

On this image, one can apply modern computing-vision techniques, e.g., Convolutional Neural networks

arXiv: 1701.08784

of particles, ordered by QCD laws

- Similar to words arranged in a sentence
- tag a jet
- (recurrent NN, recursive NN,...)
- Advantages:
 - \odot No need to bin the image \rightarrow can exploit the full angular resolution (e.g., tracking)
 - Very convenient for PF jets and track jets

• One can also represent a jet as a list of particles, ordered by QCD laws

- Similar to words arranged in a sentence
- Can use language processing techniques to tag a jet
- Deep learning offer a few opportunities (recurrent NN, recursive NN,...)
- Advantages:
 - No need to bin the image \rightarrow can exploit the full angular resolution (e.g., tracking)
 - Very convenient for PF jets and track jets

DEEP LEARNING TAGGING

• One can push this approach beyond jet, building a topology tagger for the full event

• Tested with simulated events, as a way to 1.0implement a more efficient trigger strategy

nal Efficiency (TPR) 9.0 7.0 8.0 8.0 • Could have impact on the way we process and analyze data in the 0.0 $\stackrel{\scriptstyle \perp}{0.0}$ future

EVENT TAGGING WITH RNN

Parenthesis closed

(update ongoing)

colliders (if any)

- natural dark matter candidate)
- Dark matter cannot be detected
- But LHC can probe dark matter production using balance on transverse plane
 - direct production, when high-pT jet/photon/etc is radiated
 - in cascade, from the production of other SUSY partners
- Several new methods proposed since LHC started
- A large part of the parameter space was explored, particularly in the context of Natural SUSY
- Now looking at the corners of the parameter space, where experimental conditions are more complicated

65

• When R-parity is postulated, the lightest SUSY particle becomes stable (a

• Deep learning (e.g., for jet tagging) will help us to deal with this

Search for New Physics QLHC

• We don't know what we are searching for

Our theory-inspired fullysupervised hypothesis test approach not guaranteed to work

• We know our background

• use (ALSO) a semi-supervised approach:

• train on known physics

Iook for anomalies

Tried on the same setup used for trigger cleanup

68

• Autoencoders are a useful tool for anomaly detection

- They consist of two parts:
 - <u>encoder</u>: compressing highdimensional input on a lowerdimension latent space
 - <u>decoder</u>: decompressing the point in the latent space back to the original representation

• Trainable with just "normal" data

 Anomalies = failed compressiondecompression

Autoencoders

Variational Autoencoders

• Variational autoencoders are a special kind of encoders

• in VAE, the inner nodes represent parameters of a smooth function

• easier assessment of anomaly by mean of distance between functions

• can also be used to generate events

- Processing SM events (Monte
 Monte
 Monte
 SM events (Monte
 SM events
 SM ev Carlo simulation) through autoencoders, one derive an ensemble of distributions
- An observed SM event would be instances of this ensemble
- A observed new physics event might instead give a far-away/ broader Gaussian

• We could then use a metric of function distance to quantify anomaly

<u>Quantifuing anomaly</u>

• Information theory tells us to use KL divergence

• This is embedded in the loss function used for training (KL regularization)

• $KL \ 7 oss = \# of$ extra bits needed to encode p in q. Measures p being anomalous or not

Quantifying anomaly

3438074494970981810134380

https://arxiv.org/pdf/1702.04649.pdf

VAE for Anomaly detection

- Experiment: consider a sample of W+jets events, selected by single-lepton trigger
- Train a VAE on them
- Use the encoder to compute the KL loss for
 - W+jets events
 - \odot A W' with m = 300 GeV
 - \odot A Z' with m = 500 GeV
 - A light $A \rightarrow 4\ell$ with $m_A =$ 10 GeV

VAE for Anomaly detection

- Experiment: consider a sample of W+jets events, selected by single-lepton trigger
- Train a VAE on them
- Use the encoder to compute the KL loss for
 - W+jets events
 - \odot A W' with m = 300 GeV
 - \odot A Z' with m = 500 GeV
 - A light $A \rightarrow 4\ell$ with $m_A =$ 10 GeV

Fraction of events with p-value<0.01 Wprime: 0.039953 Zprime: 0.476635 A->4mu: 0.412282

The LHC Big Data Problem

¢.			Ν	
1				
ľ				

- The L1 trigger is a complicated environment
 - decision to be taken in ~10 µsec
 - only access to local portions of the detector
 - processing on Xilinx FPGA, with *limited memory resources*
- Some ML already running @L1
 - CMS has BDT-based regressions coded as look-up tables
- Working to facilitate DL solutions **@L1 with dedicated library**

Brind LJL to

Make the model cheaper

really contribute to performances

> possible (regularization)

European Research Council

M<u>ake the model cheap</u>er

• Pruning: remove
parameters that don't
really contribute to
performances

• force parameters
to be as small as
possible
(regularization)

 $L_{\lambda}(\vec{w}) = L(\vec{w}) + \lambda ||\vec{w}_1||$

Remove the small

→ 70% reduction of weights

- Quantization: reduce the number of bits used to represent numbers (i.e., reduce used memory)
 - models are usually trained at 64 or 32 bits
 - this is not necessari 1. needed in real feg_relu ftg_relu

In our case, ^{*}
We could to 16 bits w/o loosi precision

 Beyond that, one would have to
 accept some performance loss

Absolute Relative Weights

peed vs Memory

Fully serial

reuse = 4use 1 multiplier 4 times

mult

reuse = 2use 2 multipliers 2 times each

Reuse factor: how much to parallelize operations in a hidden layer

erc

79

Less resources/ Less throughput

European Research Council

Performances

will reduce the DSP usage Council 80

