EPISODE III BEYOND MISTERARCHES

MAURIZIO PIERINI

I open a Parenthesis here to tell you about jet substructure

FROM JETS TO BOOSTED JETS

- Heavy particles (e.g., W, Z, and H bosons, top quark) can decay to 2q/3q/4q final states, giving normally multi-jet signatures
- For large enough pT, the decay products might merge into a single jet
- These jets are special: the mass of the jet peaks at the "right" value (unlike QCD jets, for which large mass values are generated by QCD)

ΔR ~ 2 M_W/p_T
(to be compared with jet size R)
Typically large jets used (Anti-Kt with R=0.8)

ET SUBSTRUCTURE

JUBSTRUCTURE VARIABL

- Several jet-shape variables proposed to quantify this behaviour (see ongoing BOOST conference for a full overview)
- N-subjettiness is among the most popular
 - Quantify how well the constituents of a jet can be arranged in N subjects

$$\tau_N^{(\beta)} = \frac{1}{p_{TJ}} \sum_{i \in \text{Jet}} p_{Ti} \min \left\{ R_{1i}^{\beta}, R_{2i}^{\beta}, \dots, R_{Ni}^{\beta} \right\}$$

J. Thaler and K. Van Tilburg http://arxiv.org/abs/1011.2268

by computing TN it for several N

2-body:
$$\tau_1^{(1)}, \tau_1^{(2)}$$

3-body:
$$\tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \tau_1^{(2)}, \tau_2^{(1)}, \tau_2^{(2)}$$

4-body:
$$\tau_1^{(0.5)}$$
, $\tau_1^{(1)}$, $\tau_1^{(2)}$, $\tau_2^{(0.5)}$, $\tau_2^{(1)}$, $\tau_2^{(2)}$, $\tau_3^{(1)}$, $\tau_3^{(2)}$

5-body:
$$\tau_1^{(0.5)}$$
, $\tau_1^{(1)}$, $\tau_1^{(2)}$, $\tau_2^{(0.5)}$, $\tau_2^{(1)}$, $\tau_2^{(2)}$, $\tau_2^{(0.5)}$, $\tau_3^{(0.5)}$, $\tau_3^{(1)}$, $\tau_3^{(2)}$, $\tau_4^{(1)}$, $\tau_4^{(2)}$

6-body:
$$\tau_1^{(0.5)}$$
, $\tau_1^{(1)}$, $\tau_1^{(2)}$, $\tau_2^{(0.5)}$, $\tau_2^{(1)}$, $\tau_2^{(2)}$, $\tau_2^{(0.5)}$, $\tau_3^{(0.5)}$, $\tau_3^{(1)}$, $\tau_3^{(2)}$, $\tau_4^{(0.5)}$, $\tau_4^{(1)}$, $\tau_4^{(2)}$, $\tau_5^{(1)}$, $\tau_5^{(2)}$

A DIJET TAGGER

- A typical tagger would consist of
 - A jet grooming procedure (trimming, pruning, soft drop) to remove soft radiation in the jet (and pileup, to some extent)
 - A (post-grooming) jet mass cut
 - A cut on an appropriate set of substructure variables
 - For instance, S vs B discrimination in CMS is optimal for di-subjet (W/Z/H) when τ2/τ1 ratio is considered

CMS-PAS-JME-13-006

- One can imagine a jet as an image impressed by energy deposits on calorimeters
- On this image, one can apply modern computing-vision techniques, e.g., Convolutional Neural networks

arXiv: 1701.08784

European Research

8

- One can imagine a jet as an image impressed by energy deposits on calorimeters
- On this image, one can apply modern computing-vision techniques, e.g., Convolutional Neural networks

European Research

- One can also represent a jet as a list of particles, ordered by QCD laws
 - Similar to words arranged in a sentence
 - Can use language processing techniques to tag a jet
- Deep learning offer a few opportunities (recurrent NN, recursive NN,...)
- Advantages:
 - No need to bin the image → can exploit the full angular resolution (e.g., tracking)
 - Very convenient for PF jets and track jets

- One can also represent a jet as a list of particles, ordered by QCD laws
 - Similar to words arranged in a sentence
 - Can use language processing techniques to tag a jet
- Deep learning offer a few opportunities (recurrent NN, recursive NN,...)
- Advantages:
 - No need to bin the image → can exploit the full angular resolution (e.g., tracking)
 - Very convenient for PF jets and track jets

EVENT TAGGING WITH RING

• One can push this approach beyond jet, building a topology tagger for the full event

Tested with simulated events, as a way to implement a more efficient trigger strategy

• Could have impact on the way we process and analyze data in the future

European

Research

Council

Parenthesis closed

BOOSTED-JETS SUSY SEARCH

- Regime already probed in Run I (update ongoing)
- Will become more relevant with HL-LHC and higher-energy colliders (if any)

SUMMARY OF EPISODE II

- When R-parity is postulated, the lightest SUSY particle becomes stable (a natural dark matter candidate)
- Dark matter cannot be detected
- But LHC can probe dark matter production using balance on transverse plane
 - direct production, when high-pT jet/photon/etc is radiated
 - in cascade, from the production of other SUSY partners
- Several new methods proposed since LHC started
- A large part of the parameter space was explored, particularly in the context of Natural SUSY
- Now looking at the corners of the parameter space, where experimental conditions are more complicated
- Deep learning (e.g., for jet tagging) will help us to deal with this

THE PLAN

- © Lecture 1: SETTING UP A SEARCH AT THE LHC
 - Searching for SUSY in practice: strategy, trigger, reconstruction
 - Designing a search: Simplified Models
 - Building a search: signal region, control regions, statistics tools
- Lecture 2: R -Parity
 Conserving SuSY
- DM direct production
- DM cascade production

- © Lecture 3: BEYOND MET-BASED SEARCHES
 - RPV SUSY
 - Displaced particles

SUMMARY OF EPISODE II

- When R-parity is postulated, the lightest SUSY particle becomes stable (a natural dark matter candidate)
- Dark matter cannot be detected
- But LHC can probe dark matter production using balance on transverse plane
 - direct production, when high-pT jet/photon/etc is radiated
 - in cascade, from the production of other SUSY partners
- Several new methods proposed since LHC started
- A large part of the parameter space was explored, particularly in the context of Natural SUSY
- Now looking at the corners of the parameter space, where experimental conditions are more complicated
- Deep learning (e.g., for jet tagging) will help us to deal with this

RPV SUSY SEARCHES

WHY R-PARITY AT ALL?

- R-parity prevents proton from decaying
- What people like of R-parity is that DM comes "for free"
- Still, it might be that SUSY has nothing/little to do with Dark Matter
- Can we renounce to R-parity in view of no R-parity conserving (RPC) SUSY?
 - Yes, but coupling have to be kept small(*) / fine-tuned
 - Even better if we have a mechanism that keeps the couplings small

HOW TO BRAKE R-PARITY

Lepton Number Violation

$$W = \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu'_iL_iH_u$$

- Leptonic RPV is easy to look for, thanks to charged leptons in the final states (similar to LQ searches, not much to say)
- Hadronic RPV more complicated: all jets final states at moderate masses
 - single production (complicated because of trigger)
 - pair production easier to access (more objects in the final state, more trigger handles)

SINGLE-PRODUCED RPV SQUARK

- aka dijet resonance search
- Traditional (easiest) LHC BSM search
- Main limitation is trigger
 - standard strategy limited >
 1 TeV
 - scouting introduced to go around this problem. Works OK down to ~500 GeV (then L1 becomes an issue)
 - ISR searches (same trick as monojet) to push sensitivity to very-small masses

1.2 CMS

1000

3000

Dijet mass [GeV]

2000

SINGLE-PRODUCED RPV SQUARK

- aka dijet resonance search
- Traditional (easiest) LHC BSM search
- Main limitation is trigger
 - standard strategy limited >
 1 TeV
 - scouting introduced to go around this problem. Works OK down to ~500 GeV (then L1 becomes an issue)
 - ISR searches (same trick as monojet) to push sensitivity to very-small masses

SINGLE-PRODUCED RPV SQUARK

- aka dijet resonance search
- Traditional (easiest) LHC BSM search
- Main limitation is trigger
 - standard strategy limited
 > 1 TeV
 - scouting introduced to go around this problem
 - ISR searches (same trick as monojet) to push sensitivity to very-small masses

PAIR-PRODUCED RPV 5TOP

- Two jet pairs in the final state, with similar masses
- Quite complicated combinatoric + large background
- Two strategies:
 - resolved dijet pairs:
 some combinatoric issue
 to find best pairing.
 Then simple bump hunt on
 average mass
 - merged dijet pairs: simpler topology (no combinatorics) and extra handles (jet substructure)

European Research

PAIR-PRODUCED RPV 5TOP

- Two jet pairs in the final state, with similar masses
- Quite complicated combinatoric + large background
- Two strategies:
 - resolved dijet pairs:
 some combinatoric issue
 to find best pairing.
 Then simple bump hunt on
 average mass
 - merged dijet pairs:
 simpler topology (no
 combinatorics) and extra
 handles (jet
 substructure)

MFV SUSY

- MFV is a kind of RPV SUSY in which RPV couplings are making small
- This is achieved requiring the couplings to scale ~ CKM factors
 - 1st-generation couplings stay small and proton is safe
 - RPV confined to 3rd generation
- MFV SUSY comes with top and bottom quarks
- One of the main motivations to look into jet multiplicity as a discriminating variable

European

Research

MFV SUSY

- MFV is a kind of RPV SUSY in which RPV couplings are making small
- This is achieved requiring the couplings to scale ~ CKM factors
 - 1st-generation couplings stay small and proton is safe
 - RPV confined to 3rd generation
- MFV SUSY comes with top and bottom quarks
- One of the main motivations to look into jet multiplicity as a discriminating variable

8 jets (4b) in 1-lepton final state

27

LONG-LIVING PARTICLES

LONG-LIVING PARTICLES IN A DETECTOR

- Signature depends on charge and lifetime
 - muon-like particle with large mass (large dE/dx)
 - track segment
 - displaced particles (track leptons, jets)

 - (for very long lifetimes) particles can be stuck in the calorimeter and decay months after

WHAT A LLP LOOKS LIKE IN A DETECTOR

- Signatures can be very tricky
- Depending on the lifetime, different detector components are involved
- Some of these detectors cannot be operated in L1 trigger (and sometimes also at HLT)
 - Trigger can be a challenge
 - More than one analysis is needed for a given model, depending on the parameter space

THE TRIGGER PROBLEM

- No track information @L1
 - need to trigger on something else (e.g., jet+MET - the ISR trick)
- At HLT, full information can be used (with some pre-selection on the rest of the event, to keep CPU under control)
- So far this works, because the L1 seed is inclusive enough

THE TRIGGER PROBLEM

- This might become a problem in the future
 - L1 trigger challenged by 200 pile-up interactions
 - New trackers might not provide dE/dx information (too many hits to read-out in non-digital mode)
- Sensitivity to these signatures might be at danger in the future

HEAVY STABLE CHARGE PARTICLES

- Depending on lifetime, particles could cross several detectors
 - Good to have detector-specific searches
 - Good to put them together as well
- These particles will deposit more energy than a muon
- dE/dx crucial to isolate the signal

DISAPPEARING TRACKS

- Disappearing tracks happen when
 - the LLP comes with charge
 - it decays to an invisible particle
 - the mass difference is small (i.e., any other decay product is undetectable)
- Can be exploited with different detectors, depending on lifetime
- That's why it is important to go closer and closer to the beam

The emerging particle (a pion) is typically too soft to be reconstructed

Research

DISAPPEARING TRACKS

• Disappearing tracks happen when

Very clean signature->can be ~ background-free search

- the LLP comes with charge
- it decays to an invisible particle
- the mass difference is small (i.e., any other decay product is undetectable)
- Can be exploited with different detectors, depending on lifetime
- That's why it is important to go closer and closer to the beam

		•		
run period	leptons	est. event count fake tracks	total	observation
2015	$0.12^{+0.11}_{-0.08} \pm 0.01$	$0^{+0.079}_{-0}{}^{+0.025}_{-0}$	$0.12^{+0.14+0.03}_{-0.08-0.01}$	1
2016B+C	$1.99 \pm 0.42 \pm 0.11$	$0.38 \pm 0.19^{+0.41}_{-0.38}$	$2.38 \pm 0.46^{+0.43}$	2
2016D-H	$3.07 \pm 0.63 \pm 0.22$	$0.91 \pm 0.35 \pm 0.91$	$3.98 \pm 0.71^{+0.93}_{-0.94}$	4
total	$5.18 \pm 0.76 \pm 0.25$	$1.3 \pm 0.4 \pm 1.0$	$6.48 \pm 0.86 \pm 1.03$	7

DISPLACED JETS

- Reconstruction of displaced jets has very specific challenges
 - physics background from b and τ jets
 - Projective geometry of the jet compromised (problematic e.g. for association of tracks to jets in particle flow)
 - Displacement exploitable in trigger only starting from HLT
- Despite these difficulties, several analyses exist that probe this scenario.

DISPLACED JETS

- Reconstruction of displaced jets has very specific challenges
 - physics background from b and τ jets
 - Projective geometry of the jet compromised (problematic e.g. for association of tracks to jets in particle flow)
 - Displacement exploitable in trigger only starting from HLT
- Despite these difficulties, several analyses exist that probe this scenario.

m_₹ [GeV]

DISPLACED VERTICES

- For smaller lifetimes, displacement becomes typically small
- NP particles would decay in the inner tracker
 - can use pixel vertexing in all its power
 - have physicsinduced SM backgrounds to deal with

STOPPING PARTICLES

- Heavy colored particles (gluinos, stop, etc) can be trapped by nuclei of the calorimeter
- Once there, depending on the lifetime, it could take hours/days/ months before it decays
- The signature is energy in the calorimeter and no beams
- Could happen during shutdown, when LHC is filling, etc
- Your trigger should run all time!

STOPPING PARTICLES

• A typical trigger consists in asking for energy in the calorimeter and no beam in the accelerator
18.6 fb⁻¹(8 TeV)

REW IDEAS: SHIP

- Advanced proposal for an experiment at the CERN SpS
 - Designed mainly to look for right-handed neutrinos (e.g., predicted by vMSM)
 - Can be used to probe generic long-living particles

REW IDEAS: SHIP

- Advanced proposal for an experiment at the CERN SpS
 - Designed mainly to look for right-handed neutrinos (e.g., predicted by vMSM)

Can be used to probe generic long-living particles

NEW IDEAS: MATHUSLA

- A detector on surface, capable of collecting decay of long-living particles produced at LHC
- No magnetic field, but particle possible thanks to track topology

NEW IDEAS: MATHUSLA

- A detector on surface, capable of collecting decay of long-living particles produced at LHC
- No magnetic field, but particle possible thanks to track topology — m_X = 5 GeV — m_X = 20 GeV — m_X = 40 GeV — MATHUSLA ATLAS

© Could probe
long-living
particles,
e.g., from

0.100

0.001

10-5

(4 events)

(exclusion)

European

Research

Higgs decays

NEW IDEAS: CODEX

• LHCb is moving HLT farm out of the detector area

• Free space could be used to host a small Mathusla-like

NEW IDEAS: CODEX

• LHCb is moving HLT farm out of the detector area

• Free space could be used to host a small Mathusla-like

detector

• Could be used to probe light long-living particles produced at LHC (e.g., in b decays)

NEW IDEAS: CODEX

• LHCb is moving HLT farm out of the detector area

• Free space could be used to host a small Mathusla-like detector $m_{\gamma_{\rm d}} = 0.5\,{\rm GeV}$ $m_{\gamma_{\rm d}} = 10\,{\rm GeV}$

Or probe long living
 particles from
 Higgs decays

NEW IDEAS: FASER

- Small detector, to be installed side-by-side the LHC tunnel, pointing to the detector interaction point
- Same target physics (dark photons, etc) but different scale, budget, and reach

NEW IDEAS: FASER

- Small detector, to be installed side-by-side the LHC tunnel, pointing to the detector interaction point
- Same target physics (dark photons, etc) but different scale, budget, and reach

NEW IDEAS: FASER

• Small detector, to be installed side-by-side the LHC tunnel, pointing to the detector interaction point

 Same target physics (dark photons, etc) but different scale, budget, and reach

REINTERPRETING PROMPT SEARCHES

- Prompt analyses are sensitive to small displacements (i.e., to small lifetime)
- This is why some traditional prompt analysis was recasted to long-living particle scenarios
- The result is already good in probing large portion of parameter space
- The deterioration of sensitivity with lifetime is less pronounced than what would expect

SUMMARY OF EPISODE III

- LHC (SUSY) searches are much more than MET-based searches
 - RPV SUSY: single & double production == new resonance searches
 (bump hunts, boosted jets, ...)
 - Large set of exotic signatures emerging from long-living particles
 - SUSY compressed spectra
 - Dark sector
 - Searches program in place
 - New ideas to extend LHC reach with new detectors
 - But don't underestimate the sensitivity of even the more classic searches

BACKUP SILDES

