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I open a Parenthesis here to tell you about jet 
substructure



James Dolen Boston Jet Workshop,  Jan 22, 2013

W-jet tagging

• W-mass selection

- Pruned jet (Ellis et al.) provides 
sharper mass resolution and 
shifts background down 
outside of W mass window

‣ Recluster the jet, don’t merge low 
pT, large angle constituents. 

• Multiple variables provide 
additional discrimination

- N-subjettiness

- Qjets volatility

- Mass drop

- Energy Correlation Functions
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CMS HIG-13-008
H → WW → lνqq

๏ Heavy particles (e.g., W, Z, and H bosons, top quark) can decay to 
2q/3q/4q final states, giving normally multi-jet signatures 

๏ For large enough pT, the decay products might merge into a single jet 

๏ These jets are special: the mass of the jet peaks at the “right” 
value (unlike QCD jets, for which large mass values are generated by  
QCD)

From Jets to Boosted Jets
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ΔR ~ 2 ΜW/pT
(to be compared 
with jet size R)

Typically large jets 
used (Anti-Kt with 

R=0.8)
q, g W,Z,H top
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Jet Substructure
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๏ Several jet-shape variables 
proposed to quantify this behaviour 
(see ongoing BOOST conference for a 
full overview)  

๏ N-subjettiness is among the most 
popular 

๏ Quantify how well the 
constituents of a jet can be 
arranged in N subjects 

๏ Can construct a complete basis  
by computing τN it for several N

Substructure variables
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J. Thaler and K. Van Tilburg http://arxiv.org/abs/1011.2268

11

V-tagging

V-tagging selection:

● Pruned jet mass in [65, 105] GeV
● τ

21
 : High-Purity (τ

21
<0.5) and Low-Purity (0.5 < τ

21
<0.75)

N-subjettiness ratio

τ
21

 = τ
2
 / τ

1

τN=
1

d0

∑
k

pT , k min {ΔR1, k ,ΔR2, k , ... ,ΔRN ,k }

HP LP

https://indico.cern.ch/event/649482/
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W-tagging Algorithm Comparison

• N-subjettiness and Q jets 
volatility are the best 
single variables

- !2/!1 with one-pass axes > 

kt axes

- Unpruned !2/!1 > pruned

• Improved performance 
using Neural Network

- New: added C2 to NN

5

8 4 Algorithms for W-jet identification

We find that the most performant variable is the t2/t1, while the pruned t2/t1 is slightly less231

performant. The performance of the t2/t1 with exclusive kT axes is the worst of the t2/t1232

variants. GQjet performs slightly worse than t2/t1. The least performant variables are the mass233

drop, the 3-point energy correlation function, C2(b = 1.7) and the jet charge. We also found234

that the discrimination power between W
+ jets and W

� jets varies by less than 10% for different235

values k between 0.3 and 1.0.236
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Figure 3: (Left) Comparison of various discriminant observable performance for W+jet events
in the low jet pT bin, 250-350 GeV. (Right) Systematic effects on the performance of the pruned
jet mass and t2/t1 W-tagging algorithm in the high jet pT bin, 400-600 GeV.

Given the performance of single variables, we study how much further discrimination power237

can be improved by combining the variables. A multivariate optimization is performed using238

the TMVA package [48]. We consider the combination of various observables in a Likelihood239

multivariate discriminant and a Multi-layer Perceptron Neural Network (MLP) multivariate240

discriminant. The variables considered in the optimization are mass drop, GQjet, t2/t1, C
b
2 ,241

planar flow, jet charge, number of jet constituents, subjet DR, trimmed grooming sensitivity242

and number of primary vertices. The variable inputs include additional observables in an243

attempt to increase the discrimination power. In general, we find a large degree of correlation244

between the t2/t1 and most of the other observables, indicating that t2/t1 includes information245

from the other observables. This is supported by the single variable ROC curves, which prove246

that the standard t2/t1 is the most performant variable, as shown in Fig. 3 (left). The ROC247

curves obtained from the multivariate methods are also shown in Fig. 3 (left). Compared to248

the most performant single variable t2/t1, a small improvement is found with the multivariate249

discriminators.250

This variable comparison was performed after requiring a cut on the pruned jet mass. Since251

all of the considered substructure variables are correlated with the jet mass, it is important252

to note, that the variable comparison as shown in Fig. 3 (left) depends strongly on the choice253

of the primary discriminator, namely the pruned jet mass. When using the non-groomed jet254

mass instead of the pruned jet mass as primary discriminator, other variables with stronger255

correlation with pruned jet mass show more additional discrimination power than t2/t1. The256

total discrimination power of the combination of the primary discriminator and additional257

variables is always better when the pruned jet mass is used as primary discriminator, rather258

WORK IN PROGRESS

CMS-PAS-JME-13-006

๏ A typical tagger would consist of 

๏ A jet grooming procedure 
(trimming, pruning, soft drop) 
to remove soft radiation in the 
jet (and pileup, to some extent) 

๏ A (post-grooming) jet mass cut 

๏ A cut on an appropriate set of 
substructure variables 

๏ For instance, S vs B 
discrimination in CMS is optimal 
for di-subjet (W/Z/H) when τ2/τ1 
ratio is considered

A diJet Tagger
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๏ One can imagine a jet as an image 
impressed by energy deposits on 
calorimeters 

๏ On this image, one can apply modern 
computing-vision techniques, e.g., 
Convolutional Neural networks

Deep Learning Tagging
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Image approach

• Jets = 2d grayscale images:

• 1 pixel = 0.1 in eta, 5 degree in phi

• pixel energy: calorimeter ET

• Preprocessing

• Center maximum

• Rotate so that second maximum is 12 o’clock

• Flip so that third maximum is on the right side

• Crop to 40x40 pixels
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,
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position. The interpolation is done linearly;
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Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.
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Image approach
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Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R0. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1. For top tagging ⌧3/⌧2 is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧ sdj in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ msd,mfat, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (SoftDrop + N -subjettiness) , (16)

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) . (17)
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loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ msd,mfat, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (SoftDrop + N -subjettiness) , (16)

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,
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SoftDrop + n-subjettiness:

MotherOfTaggers:
• Train a BDT on a set of 

standard tagging variables
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Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R0. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1. For top tagging ⌧3/⌧2 is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧ sdj in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ msd,mfat, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (SoftDrop + N -subjettiness) , (16)

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) . (17)
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๏ Advantages:  

๏ No need to bin the image ! can 
exploit the full angular 
resolution (e.g., tracking) 

๏ Very convenient for PF jets and 
track jets

Deep Learning Tagging

 9

๏ One can also represent a jet as a list 
of particles, ordered by QCD laws 

๏ Similar to words arranged in a sentence 

๏ Can use language processing techniques to 
tag a jet 

๏ Deep learning offer a few opportunities 
(recurrent NN, recursive NN,…)

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

14

towers 

particles

images

• W-jet tagging example 
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt

Deep Learning Tagging

 10

๏ Advantages:  

๏ No need to bin the image ! can 
exploit the full angular 
resolution (e.g., tracking) 

๏ Very convenient for PF jets and 
track jets

๏ One can also represent a jet as a list 
of particles, ordered by QCD laws 

๏ Similar to words arranged in a sentence 

๏ Can use language processing techniques to 
tag a jet 

๏ Deep learning offer a few opportunities 
(recurrent NN, recursive NN,…)



๏ One can push this 
approach beyond jet, 
building a topology 
tagger for the full 
event 

๏ Tested with simulated 
events, as a way to 
implement a more 
efficient trigger 
strategy 

๏ Could have impact on 
the way we process and 
analyze data in the 
future

Event Tagging with RNN

 11
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Figure 11: Signal efficiency for the T1ttcc and T1t1t simplified model spectra, as a function
of the gluino and neutralino masses. Three mass splittings between top squark and LSP are
considered for the T1ttcc model: 10, 25, and 80 GeV, shown in the top left, top right, and bottom
left panels, respectively. The efficiency for the T1t1t model with a mass splitting of 175 GeV is
shown in the bottom right panel.

๏ Regime already probed in Run I 
(update ongoing) 

๏ Will become more relevant with 
HL-LHC and higher-energy 
colliders (if any)

Boosted-Jets SuSY Search
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Figure 10: Background predictions and observations. The results are shown in bins of MR for
each R2 bin. The hatched band represents the total uncertainty in the background prediction.
Overlaid are two signal distributions corresponding to the T1ttcc model with meg = 1 TeV,
met = 325 GeV, and mec0

1
= 300 GeV, and the T1t1t model with meg = 800 GeV, met = 275 GeV,

and mec0
1
= 100 GeV.
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Figure 11: Signal efficiency for the T1ttcc and T1t1t simplified model spectra, as a function
of the gluino and neutralino masses. Three mass splittings between top squark and LSP are
considered for the T1ttcc model: 10, 25, and 80 GeV, shown in the top left, top right, and bottom
left panels, respectively. The efficiency for the T1t1t model with a mass splitting of 175 GeV is
shown in the bottom right panel.

https://arxiv.org/pdf/1602.02917.pdf


๏ When R-parity is postulated, the lightest SUSY particle becomes stable (a 
natural dark matter candidate) 

๏ Dark matter cannot be detected 

๏ But LHC can probe dark matter production using balance on transverse plane 

๏ direct production, when high-pT jet/photon/etc is radiated 

๏ in cascade, from the production of other SUSY partners 

๏ Several new methods proposed since LHC started 

๏ A large part of the parameter space was explored, particularly in the context 
of Natural SUSY 

๏ Now looking at the corners of the parameter space, where experimental 
conditions are more complicated 

๏ Deep learning (e.g., for jet tagging) will help us to deal with this

Summary of Episode ii
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The Plan

 15

๏ Lecture 3: Beyond MET-Based searches 

๏ RPV SUSY 

๏ Displaced particles 

๏

๏ Lecture 1: Setting up A Search At The LHC 

๏ Searching for SUSY in practice: strategy, trigger, reconstruction 

๏ Designing a search: Simplified Models 

๏ Building a search: signal region, control regions, statistics 
tools

๏ Lecture 2: R -Parity 
Conserving SuSY 

๏ DM direct production 

๏ DM cascade production



๏ When R-parity is postulated, the lightest SUSY particle becomes stable (a 
natural dark matter candidate) 

๏ Dark matter cannot be detected 

๏ But LHC can probe dark matter production using balance on transverse plane 

๏ direct production, when high-pT jet/photon/etc is radiated 

๏ in cascade, from the production of other SUSY partners 

๏ Several new methods proposed since LHC started 

๏ A large part of the parameter space was explored, particularly in the context 
of Natural SUSY 

๏ Now looking at the corners of the parameter space, where experimental 
conditions are more complicated 

๏ Deep learning (e.g., for jet tagging) will help us to deal with this

Summary of Episode ii
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RPv SuSy Searches



๏ R-parity prevents proton from decaying 

๏ What people like of R-parity is that 
DM comes “for free” 

๏ Still, it might be that SUSY has 
nothing/little to do with Dark Matter 

๏ Can we renounce to R-parity in view of 
no R-parity conserving (RPC) SUSY? 

๏ Yes, but coupling have to be kept 
small(*) / fine-tuned 

๏ Even better if we have a mechanism 
that keeps the couplings small

Why R -Parity at all?

 18

1

1 Introduction
Many beyond the standard model (BSM) scenarios in particle physics incorporate particles
that decay into fully hadronic final states. Supersymmetric (SUSY) models are standard model
(SM) extensions, which simultaneously solve the hierarchy problem and unify particle interac-
tions [1, 2]. In natural SUSY models, where there is minimal fine-tuning, the top quark super-
partner (top squark or stop) and the superpartners of the Higgs boson (higgsinos) are required
to be light [3–7]. Natural SUSY is under-constrained in certain R-parity violating (RPV) sce-
narios [8]. R-parity is a quantum number defined as R = (�1)3B+L+2S, where B and L are
the baryon and lepton numbers, respectively, and S is the spin. The RPV superpotential, W, is
defined as

W =
1
2

lijkLiLjE
c

k
+ l0

ijk
LiQjD

c

k
+

1
2

l00
ijk

U
c

i
D

c

j
D

c

k
+ µ0

i
Li Hu (1)

where lijk, l0
ijk

, l00
ijk

and µ0
i

are trilinear couplings of each term, Li are the left-handed lepton
doublets, Ei are the right-handed lepton doublets, Qi the left-handed quark doublets, Ui and
Dj are right-handed quarks, Hu is the Higgs that gives mass to the up-type quarks and i, j, k =
1, 2, 3 are generation indices while the superindex c is the charge conjugation.

Such a superpotential contains terms which violate lepton number (1st and 2nd term in equa-
tion (1)) or baryon number (3rd term), leading to a rapid decay of protons [9]. Assuming
R-parity conservation, the coupling constants of these terms vanish or they are sufficiently
small for the lifetime of the proton to be compatible with the SM. Under RPV, the coupling of
the hadronic term of the potential (l00

ijk
) or the leptonic term (lijk) or the mixture of the two

(l0
ijk

) may be non-zero. For instance, a non-zero hadronic RPV term would produce decays
of squarks into multiple quarks in the final state with no missing energy or leptons, while a
non-zero leptonic RPV term could yield sleptons decaying into a pair of leptons.

We present the results of a search for pair production of resonances decaying to pairs of light-
flavor quarks in events where the resonant particles are boosted (i.e. produced with large trans-
verse momentum such that the decay products are close together) resulting in a final state with
two massive jets. We use the pair production of stops decaying to light quarks via hadronic
RPV (Figure 1) as the benchmark model of this analysis. A previous search by CDF [10] at the
Fermilab Tevatron placed limits on the production cross sections possible in such models, ex-
cluding stop masses between 50 and 100 GeV. In Run I of the LHC, CMS excluded this model
for stop masses between 200 and 350 GeV [11]. In Run II, ATLAS extended this exclusion for
stop masses from 250 GeV to 405 GeV and between 445 and 510 GeV [12]. For the related
light-quark plus b-quark decay channel, the CMS stop mass exclusion is between 200 and 385
GeV [11], while for ATLAS [13] it is between 100 and 310 GeV at 8 TeV (the only one exploiting
the boosted regime), and from 250 to 345 GeV at 13 TeV [14].

The analysis presented here is based on data corresponding to 2.7 fb�1 [15] of integrated lumi-
nosity from proton-proton collisions at

p
s = 13 TeV, collected with the CMS detector [16] at the

CERN LHC in 2015. At this collision energy, particles with low mass can be produced with sig-
nificant momentum and their decay products will be Lorentz boosted, resulting in collimated
fragmentation products. We are therefore able to reconstruct the particle’s decay products as a
single jet with a large cone size. These jets will differ from QCD jets in their internal structure
and this analysis exploits this feature to reduce QCD and other SM backgrounds. Such boosted
topologies have been explored using several grooming and substructure techniques developed
in recent years [17, 18], and CMS has studied them in great detail [19]. Grooming techniques

(*) For very small couplings, particle 
might become long living (see tomorrow)



๏ Leptonic RPV is easy to look for, thanks to charged 
leptons in the final states (similar to LQ searches, 
not much to say) 

๏ Hadronic RPV more complicated: all jets final states 
at moderate masses  

๏ single production (complicated because of trigger)  

๏ pair production easier to access (more objects in 
the final state, more trigger handles)

How to Brake R -Parity

 19

Lepton Number Violation

Baryon Number Violation



Single-produced RPv Squark

 20

๏ aka dijet resonance search 

๏ Traditional (easiest) LHC BSM 
search 

๏ Main limitation is trigger 

๏ standard strategy limited > 
1 TeV 

๏ scouting introduced to go 
around this problem. Works 
OK down to ~500 GeV (then L1 
becomes an issue) 

๏ ISR searches (same trick as 
monojet) to push sensitivity 
to very-small masses

https://arxiv.org/pdf/1806.00843.pdf


๏ aka dijet resonance search 

๏ Traditional (easiest) LHC BSM 
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OK down to ~500 GeV (then L1 
becomes an issue) 

๏ ISR searches (same trick as 
monojet) to push sensitivity 
to very-small masses

 21

Single-produced RPv squark

https://arxiv.org/pdf/1804.03496.pdf
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Single-produced RPv squark
๏ aka dijet resonance search 

๏ Traditional (easiest) LHC 
BSM search 

๏ Main limitation is trigger 

๏ standard strategy limited 
> 1 TeV 

๏ scouting introduced to go 
around this problem 

๏ ISR searches (same trick 
as monojet) to push 
sensitivity to very-small 
masses



Putting all Together

 23



Pair-Produced RPv Stop

 24

draw 4jets here

Fit done on the 
average dijet 

mass

๏ Two jet pairs in the final 
state, with similar masses 

๏ Quite complicated 
combinatoric + large 
background 

๏ Two strategies: 

๏ resolved dijet pairs: 
some combinatoric issue 
to find best pairing. 
Then simple bump hunt on 
average mass 

๏ merged dijet pairs: 
simpler topology (no 
combinatorics) and extra 
handles (jet 
substructure)



๏ Two jet pairs in the final 
state, with similar masses 

๏ Quite complicated 
combinatoric + large 
background 

๏ Two strategies: 

๏ resolved dijet pairs: 
some combinatoric issue 
to find best pairing. 
Then simple bump hunt on 
average mass 

๏ merged dijet pairs: 
simpler topology (no 
combinatorics) and extra 
handles (jet 
substructure)

Pair-Produced RPv Stop
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๏ MFV is a kind of RPV SUSY in which 
RPV couplings are making small 

๏ This is achieved requiring the 
couplings to scale ~ CKM factors 

๏ 1st-generation couplings stay 
small and proton is safe 

๏ RPV confined to 3rd generation 

๏ MFV SUSY comes with top and bottom 
quarks 

๏ One of the main motivations to 
look into jet multiplicity as a 
discriminating variable

MFv SuSy

 26

Baryonic RPV: standard searches at 8 TeV

No MET but large jet multiplicities, large HT , many b’s, SS leptons.

• gluino ! jjj, tjj, 5j:
Model RPV

P1

P2
g̃

g̃

t

b

s

s

b

t
. paired 3j resonances [CMS,1311.1799]

multijets [ATLAS, 1502.05686]

same-sign leptons: [ATLAS-CONF-2013-007]

[CMS,1311.6736]

mg̃ & 1 TeV (beyond simplified spectra)
[Evans,Kats,Shih,Strassler,1310.5758][Graham et al,1403.7197]

• squark (stop) ! jj, bj: paired jj resonances

[CMS, 1412.7706], [ATLAS, ATLAS-CONF-2015-026]

mt̃ & 350 � 400 GeV (stop LSP)

2/17

https://arxiv.org/abs/1111.1239

8 jets (4b) in 
1-lepton 

final state

https://arxiv.org/abs/1111.1239


๏ MFV is a kind of RPV SUSY in which 
RPV couplings are making small 

๏ This is achieved requiring the 
couplings to scale ~ CKM factors 

๏ 1st-generation couplings stay 
small and proton is safe 

๏ RPV confined to 3rd generation 

๏ MFV SUSY comes with top and bottom 
quarks 

๏ One of the main motivations to 
look into jet multiplicity as a 
discriminating variable

MFv SuSy

 27

Baryonic RPV: standard searches at 8 TeV

No MET but large jet multiplicities, large HT , many b’s, SS leptons.

• gluino ! jjj, tjj, 5j:
Model RPV

P1

P2
g̃

g̃

t

b

s

s

b

t
. paired 3j resonances [CMS,1311.1799]

multijets [ATLAS, 1502.05686]

same-sign leptons: [ATLAS-CONF-2013-007]

[CMS,1311.6736]

mg̃ & 1 TeV (beyond simplified spectra)
[Evans,Kats,Shih,Strassler,1310.5758][Graham et al,1403.7197]

• squark (stop) ! jj, bj: paired jj resonances

[CMS, 1412.7706], [ATLAS, ATLAS-CONF-2015-026]

mt̃ & 350 � 400 GeV (stop LSP)

2/17

https://arxiv.org/abs/1111.1239

8 jets (4b) in 
1-lepton 

final state

https://arxiv.org/abs/1111.1239


 Long-Living Particles



๏ Signature depends on charge 
and lifetime 

๏ muon-like particle with 
large mass (large dE/dx) 

๏ track segment 

๏ displaced particles (tracks, 
leptons, jets) 

๏  … 

๏ (for very long lifetimes) 
particles can be stuck in 
the calorimeter and decay 
months after

Long-Living Particles in A Detector

 29



๏ Signatures can be very tricky 

๏ Depending on the lifetime, 
different detector components 
are involved 

๏ Some of these detectors 
cannot be operated in L1 
trigger (and sometimes also 
at HLT) 

๏ Trigger can be a challenge 

๏ More than one analysis is 
needed for a given model, 
depending on the parameter 
space

What a LLP looks like in a detector

 30
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Disclaimer 4

Particles with a similar lifetime may leave different signals in 
different experiments 

on the other hand different phenomenological models can give similar signature 

I will try to group similar signatures together 
even if different experiments may have  
considered different models and the results may not  
always be directly comparable

1m 2m 3m 4m 



๏ No track information @L1 

๏ need to trigger on 
something else (e.g., 
jet+MET - the ISR 
trick) 

๏ At HLT, full information 
can be used (with some 
pre-selection on the 
rest of the event, to 
keep CPU under control) 

๏ So far this works, 
because the L1 seed is 
inclusive enough

The Trigger Problem

 31



๏ This might become a 
problem in the future 

๏ L1 trigger challenged 
by 200 pile-up 
interactions 

๏ New trackers might 
not provide dE/dx 
information (too many 
hits to read-out in 
non-digital mode) 

๏ Sensitivity to these 
signatures might be at 
danger in the future

The Trigger Problem
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Heavy Stable Charge Particles
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๏ Depending on lifetime, particles could cross several 
detectors 

๏ Good to have detector-specific searches 

๏ Good to put them together as well 

๏ These particles will deposit more energy than a muon 

๏ dE/dx crucial to isolate the signal



๏ Disappearing tracks happen when 

๏ the LLP comes with charge 

๏ it decays to an invisible 
particle 

๏ the mass difference is small 
(i.e., any other decay product 
is undetectable) 

๏ Can be exploited with different 
detectors, depending on lifetime 

๏ That’s why it is important to go 
closer and closer to the beam

Disappearing Tracks

 34

ATLAS and CMS Disappearing tracks 10

CERN-EP-2017-179

EXO-16-044

Chargino and neutralino production plus one or more jets 
triggering on the rest of the events 

Very few events expected, almost background free…

The emerging particle (a pion) 
is typically too soft to be 

reconstructed
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ATLAS and CMS Disappearing tracks 10

CERN-EP-2017-179

EXO-16-044

Chargino and neutralino production plus one or more jets 
triggering on the rest of the events 

Very few events expected, almost background free…

ATLAS and CMS Disappearing tracks 10

CERN-EP-2017-179

EXO-16-044

Chargino and neutralino production plus one or more jets 
triggering on the rest of the events 

Very few events expected, almost background free…Very clean signature->can be ~ 
background-free search



๏ Reconstruction of displaced jets has 
very specific challenges 

๏ physics background from b and τ jets 

๏ Projective geometry of the jet 
compromised (problematic e.g. for 
association of tracks to jets in 
particle flow) 

๏ Displacement exploitable in trigger 
only starting from HLT 

๏ Despite these difficulties, several 
analyses exist that probe this 
scenario.

Displaced Jets

 36

CMS-EXO-16-003



Displaced Jets
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๏ Reconstruction of displaced jets has 
very specific challenges 

๏ physics background from b and τ jets 

๏ Projective geometry of the jet 
compromised (problematic e.g. for 
association of tracks to jets in 
particle flow) 

๏ Displacement exploitable in trigger 
only starting from HLT 

๏ Despite these difficulties, several 
analyses exist that probe this 
scenario.
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Broad class of signatures 
Massive particles decaying with displaced vertices associated to large number of  
track based invariant mass 

ATALS looks for long lived gluinos in split susy 

CMS aims to a model independent search and  interprets the results in a couple 
of benchmark scenarios one being stop production in RPV decays to b-quarks+leptons  

makes use of an ad hoc trigger to select jets associated to displaced tracks 

One of the main background coming from interactions  
with the detector material. 

detailed maps with the material descriptions are used to compute the  
interaction probability

ATLAS and CMS Displaced vertices and appearing jets 12

CERN-EP-2017-202

EXO-16-003
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๏ For smaller lifetimes, displacement 
becomes typically small

Displaced vertices

 38

๏ NP particles 
would decay in 
the inner tracker  

๏ can use pixel 
vertexing in 
all its power 

๏ have physics-
induced SM 
backgrounds to 
deal with



Stopping Particles
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๏ Heavy colored particles (gluinos, 
stop, etc) can be trapped by nuclei 
of the calorimeter 

๏ Once there, depending on the 
lifetime, it could take hours/days/
months before it decays 

๏ The signature is energy in the 
calorimeter and no beams 

๏ Could happen during shutdown, when 
LHC is filling, etc 

๏ Your trigger should run all time!

LHC
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Figure 1: The reconstruction efficiency #reco for eg andet R-hadrons that stop in the barrel region
of the calorimeter as a function of the energy of the produced SM daughter particle. The shaded
bands indicate the systematic uncertainty in #reco.

an approximate trigger efficiency of 70%. We define #reco as the number of signal events that
pass all selection criteria (including the trigger requirement) divided by the number of signal
events that stop within the barrel region of the calorimeter. The reconstruction efficiency de-
pends principally on the energy of the visible daughter particle of the R-hadron decay, which
we denote by Eg (Et) if the daughter is a gluon (top quark). The reconstruction efficiencies
obtained for gluinos and top squarks are plotted as a function of this energy in Fig. 1. Above
the minimum energy threshold for the SM decay products, where #reco becomes approximately
constant, Eg > 120 GeV (Et > 150 GeV), we obtain #reco ⇡ 45% (32%) for eg(et) decays. The top
squark efficiency is lower than the gluino efficiency primarily because of t ! bµn decays that
yield less visible energy in the calorimeter and are rejected by the muon vetoes. When Et is
below mt, which can happen in cases when the mass splitting between theet and ec0 is small, the
top quark is off the mass-shell.

The signal efficiency is given by the product of #stopping and #reco.

6 Backgrounds
It is possible for halo muons to escape detection in the endcap muon system. Escaping detec-
tion is uncommon, but owing to the high rate of halo production in the 2012 data collection
period, the expected halo background is non-negligible. We estimate the halo veto inefficiency
using a “tag-and-probe” method [27] that analyzes a high-purity sample of halo muons to de-
termine the rates at which we record hits on both ends of the endcap muon detectors, compared
to the rate at which we see only the “incoming” or “outgoing” portions of the halo muon track.
Because of timing and trigger effects, we may only observe the outgoing leg of the halo muon,
with the incoming leg recorded in a previous BX. When the reverse occurs, we see only the
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Figure 3: The left-hand axes present expected and observed 95% CL upper limits on top squark
and gluino pair production cross sections using the cloud model of R-hadron interactions, as
a function of particle lifetime. The NLO+NLL cross sections shown were obtained with NLL-
FAST [37]. The right-hand axis shows the quantity s⇥B⇥ #stopping ⇥ #reco, which is more model
independent. The structure observed between 10�7 and 10�5 s is due to the number of observed
events incrementing when crossing boundaries between lifetime bins. When Et < mt, the top
quark is off the mass shell.

signal region are presented in Table 4. Limits on gluino and squark masses for each threshold
are presented in Table 5. These limits are valid for the minimum value of Eg and Et that we
calculate from the turn-on curves shown in Fig. 5. These minimum values are listed in Table 5
for each threshold; they increase with increased Ethresh because the turn on plateau for #reco
moves in response to the higher thresholds as seen in Fig. 5.

The systematic uncertainties in #reco and integrated luminosity are unaffected by the increase
in the jet energy threshold. However, the systematic uncertainty resulting from the JES does
vary somewhat with different Ethresh. The final JES uncertainty is calculated by measuring
the change in #reco when the jet energy threshold requirement is varied according to the JES
systematic uncertainty. Variations in the jet energy requirement have the largest impact for
gluon (top) energies close to the threshold, so we perform this calculation on simulated signal
samples corresponding to the minimum values of Eg (Et).

As mentioned previously, increasing Ethresh affects the masses of ec0 that are accessible to the
analysis. Figure 6 summarizes how these different jet energy thresholds exclude different re-
gions of the (meg, mec0) phase space. Figure 7 does the same for the (met, mec0) phase space, though
it only applies to on-shell top quark decays because mec0 is unknown when the top goes off
mass-shell. It should be noted that the minimum lifetime for the higher threshold limits in-
creases from 1 µs to 10 µs. This decrease in sensitivity to smaller lifetimes is due to the smaller
sample size associated with the increased energy requirement.

Stopping Particles

 40

๏ A typical trigger consists in asking for energy in the calorimeter 
and no beam in the accelerator



๏ Advanced proposal for an experiment at the CERN SpS 

๏ Designed mainly to look for right-handed neutrinos (e.g., 
predicted by νMSM) 

๏ Can be used to probe generic long-living particles

New ideas: SHiP

 41https://arxiv.org/abs/1708.09389

SHiP

• SHiP is a new proposed intensity-frontier experiment aiming to search
for neutral hidden particles with mass up to O(10)GeV and
extremely weak couplings down to 10�10.

Decay of hidden particles

p beam

target
µ-shield decay vessel

spectrometer
CAL/PID

hidden particle decay products

• Large decay volume followed by spectrometer, calorimeter, PID

• Shielding from SM particles: hadron absorber and veto detectors

D. Bick (UHH) TAUP 2017: SHiP July 26, 2017 7 / 15
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New ideas: SHiP

 42https://arxiv.org/abs/1708.09389

Search for new physics with the SHiP experiment at CERN Oliver Lantwin

before the current round of re-optimisation, i. e. these sensitivity curves correspond to the technical
proposal (TP) [1] configuration.

(a) (b)

(c)

Figure 2: Sensitivity for different models at SHiP. (a) HNL sensitivity at SHiP for nMSM with
U

2
e

: U
2
µ : U

2
t = 1 : 16 : 3.8 and a normal neutrino mass hierarchy. Source: Ref. [6]; (b) Dark scalar

sensitivity at SHiP. Source: Ref. [7]; (c) Light dark matter sensitivity at SHiP for m
A0

mc
= 3. Source:

Ref. [8]

3.1 HNL

For HNL the available parameter space is limited theoretically by observations of the baryon
asymmetry of the universe (BAU), the big bang nucleosynthesis (BBN) and a model-independent
limit for all see-saw models. The SHiP sensitivity for HNL in this space is shown in figure 2a.

The SHiP sensitivity is best up to about 3 GeV, which is above the charm kinematic limit, thanks
to a significant contribution from B-meson decays. In this region it is unique and complementary to
the region that could be probed at the future circular collider (FCC) in e

+
e
� mode.

3.2 Dark scalars

The SHiP sensitivity for dark scalars is shown in figure 2b. Again, SHiP covers a unique part of
the parameter space, complementary to other experiments. For short lifetimes B-factories and LHCb

4



New ideas: MatHusla

 43

Figure 1: Exclusion reach of MATHUSLA, corresponding to 4 expected decays in the
detector (solid curves), compared to the best-case ATLAS projection (dotted curves), for
pair production of LLPs in exotic Higgs decays h ! XX, from [1]. The three curves of
each set correspond to three di↵erent values of the LLP mass. Sensitivity up to the BBN
lifetime limit [46] is possible.
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๏ A detector on surface, capable of collecting decay of 
long-living particles produced at LHC 

๏ No magnetic field, but particle possible thanks to 
track topology
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https://arxiv.org/pdf/1606.06298.pdf

๏ Could probe 
long-living 
particles, 
e.g., from 
Higgs decays

https://arxiv.org/pdf/1606.06298.pdf


๏ LHCb is moving HLT farm out of the detector area 

๏ Free space could be used to host a small Mathusla-like 
detector

New ideas: Codex

 45https://arxiv.org/pdf/1708.09395.pdf
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FIG. 1. Layout of the LHCb experimental cavern UX85 at point 8 of the LHC [66], overlaid with the CODEX-b apparatus.

(ii) The proximity of the box to LHCb – approximately
only four bunch crossing times for relativistic ob-
jects – may permit it to interface with LHCb’s
planned triggerless readout, allowing for identifica-
tion and at least partial reconstruction of the LLP
event. For the benchmarks we consider here, this
may enable one to tag a VBF jet for Higgs decays,
or an associated K(⇤) for B decays.

(iii) The modest size of the fiducial volume may also
permit, in principle, implementation of more am-
bitious detection technologies such as calorimetry
or time-of-flight, providing momentum reconstruc-
tion and particle identification that will aid in the
confirmation of a discovery.

B. Reach intuition

The geometric acceptance of the CODEX-b box is ⇠

1% (normalized to 4⇡). The LLP reach is attenuated
further by the distribution of the LLP production and
interplay between the LLP lifetime ⌧ and the box depth.
The number of LLP decay vertices expected in the box

Nbox = LLHCb ⇥ �pp!'X ⇥

Z

vol

d"(r, ⌘)

dV
dV , (1)

where the location of the box is specified by an azimuthal
angle, the distance from the IP, r, and the pseudorapid-
ity, ⌘. In these coordinates, the di↵erential fiducial e�-
ciency is

d"(r, ⌘)

dV
=

1

2⇡r2c⌧

Z
d� w(�, ⌘) ⇥

e�r/(c⌧��)

��
. (2)

with � and � the usual kinematic variables. The func-
tion w(�, ⌘) is the di↵erential probability of producing
the LLP with pseudorapidity ⌘ and velocity �, and is
typically obtained from Monte Carlo.

To gain a rough sense of the achievable fiducial e�-
ciency, let us assume w is factorizable into a �-function in
� at �0�0 ⇠ 3 and a flat distribution in pseudorapidity for
|⌘| < ⌘0 ⇠ 5. This is a reasonable approximation for, e.g.,
an exotic Higgs decay. That is, w(�, ⌘) ⇡ �(���0)/(2⌘0)
on the box domain ⌘ 2 [0.2, 0.6]. The fiducial e�ciency
is then approximately

"box '
0.4

2⌘0

|�2 � �1|

2⇡

h
e�r1/r0 � e�r2/r0

i
, (3)

with r0 = c⌧�0�0. Using |�2 � �1| ⇠ 10/25, r1 ⇠ 25 m,
r2 ⇠ 35 m, one estimates a maximum fiducial e�ciency
"box ⇠ 10�3. In the long (short) lifetime regime c⌧ � r1,2

(c⌧ ⌧ r1,2), this e�ciency is linearly (exponentially) sup-
pressed by |r2� r1|/r0 (e�r1/r0). In the case of Higgs de-
cay to dark photons, e.g., this translates to a maximal 2�
exclusion reach of Br[h ! 2�d] ⇠ 10�4, for L = 300 fb�1

expected after Run 5. We confirm this estimate with a
more detailed simulation below.

C. Tracking

In order to demonstrate the feasibility of the proposed
detector, we have studied a simple tracking layout based
on RPC strip modules with 1 cm2 e↵ective granularity.
Such modules typically also have 1 ns or better timing
resolution, which may be useful for background rejection
or improving the reconstruction of slow-moving signals.
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FIG. 3. CODEX-b reach for B ! Xs' in the s2✓–m' plane.
Solid (dashed) blue line assumes 100% (Tab. I) tracking e�-
ciency. Dot-dashed line indicates the reach for L = 1ab�1.

by e↵ects of hadronic resonances when m' ⇠ 1 GeV, as
well as threshold e↵ects. The theory uncertainties in this
region are substantial, and we use the data-driven result
from [92, 93]. Another common choice is the perturba-
tive spectator model [94]. The di↵erence in reach pre-
dicted by both models can be rather large, especially in
the region around the masses of the f0 mesons. As an
example, for m' = 1 GeV the branching ratio is related
to the lifetime via Br[B ! Xs'](c⌧'/1 m) ⇠ 6 ⇥ 10�10

in the data driven model, while the analogous number in
the spectator model is 2 ⇥ 10�8.

We generate a B meson sample with Pythia 8, enforc-
ing the exclusive decay B ! K' as a proxy to estimate
the box fiducial e�ciency for B ! Xs'. We do not in-
clude muon shadow contributions, as the muon energy
in these LLP decays is typically low, Eµ . few GeV, so
that muon penetration (scattering) through the concrete
shield might be unacceptably low (high) for a decay ver-
tex reconstruction. The peak box fiducial e�ciency is
⇠ 10�4 at c⌧' ⇠ 10 m: The LLPs captured by the trans-
versely located box are typically only mildly boosted.

In Fig. 3 we show the CODEX-b reach (exclusion at
greater than 95% CL) on the Higgs mixing portal s2

✓–m'

parameter space, compared with existing bounds from
CHARM [95] and LHCb [41], as well as projected reaches
for LHCb, MATHUSLA and SHiP. We assume a bb̄ pro-
duction cross-section of 500µb. For the projected LHCb
reach we rescaled the existing B ! K(' ! µµ) limit [41]
under the (optimistic) assumption of zero background,
implying that the limit on the fiducial rate scales lin-
early with the integrated luminosity. (A similar limit
from B ! K⇤(' ! µµ) is slightly weaker [42].) The
sensitivity of MATHUSLA to this signature has concur-
rently been pointed out in [96]. The curve here is our own
recast of the MATHUSLA reach and agrees with the re-
sults in [96], up to small di↵erences which can attributed

to slightly di↵erent assumptions regarding the width of
'. The original SHiP projection [97] was computed us-
ing a perturbative spectator model for the width of '.
To properly compare all experiments, the curve shown
in Fig. 3 is a recast to the data-driven model in [92, 93],
where we use the e�ciency maps provided in [97].

The lower extent of the reach in s2

✓ is determined by
the total number of beauty hadrons and the CODEX-b
fiducial e�ciency, while the upper extent of the s2

✓ reach
is controlled by the ' lifetime: A larger s2

✓ implies a larger
rate of ' production along with a shorter ' lifetime, such
that most '’s decay before they reach the detector. One
finds that CODEX-b would significantly extend the reach
of LHCb, and complement part of the projected param-
eter reach for SHiP as well as for MATHUSLA.

One may also consider more general portals that do
not feature the fixed branching ratio-lifetime relations
predicted by the simplest Higgs portal models. In Fig. 4
we show the branching ratio reach for such theories, for
various ' mass benchmarks. Compared to LHCb, which
searches for B ! K(' ! µµ), a key advantage is that
the reach is not sensitive to the model-dependent muonic
branching ratio, only requiring instead that the final
states are trackable. (Decays into neutral hadron pairs,
such as ⇡0⇡0, cannot be seen without calorimetry, how-
ever such final states comprise at most O(30%) of final
states for 2m⇡ < m' . 1 GeV and typically otherwise
comprise a much smaller contribution.) While the muon
branching ratio is typically O(1) for m' < 2mK from
kinematic considerations, at higher masses this branch-
ing ratio may drop precipitously to the sub-percent level.
As an example, we show the projected LHCb reach in
Fig. 4 for m' = 0.5 GeV compared to m' = 1GeV.

B. Exotic Higgs decays

Exotic Higgs decays to two dark photons may be gener-
ated by a kinetic mixing portal (e.g. [59–62]). In the short
lifetime limit, dark photons can be searched for with the
main LHCb detector, in D⇤ decays [101] or with an in-
clusive search [102]. To estimate the CODEX-b fiducial
e�ciency, we simulate gluon fusion Higgs production at
IP8 with Pythia 8, with subsequent h ! �d�d decay.
The dark photon branching ratios to various SM final
states are approximated from existing e+e� data [103],
which is relevant if one exploits the muon shadow. In
Fig. 5 we show the expected reach in Br[h ! �d�d] for
m�d = 0.5 and 10 GeV benchmarks as a function of dark
photon lifetime, for both the CODEX-b fiducial volume
and for the case that the muon shadow can be used. For
the 0.5 GeV benchmark, the larger �d ! µµ branching
ratio enhances the reach of the muon shadow, compared
to the 10 GeV case.

A displaced vertex search at ATLAS/CMS has geo-
metric acceptance ⇠ 1 (normalized to 4⇡), and approxi-
mately 10 times higher luminosity. Other than the trig-
ger challenges associated with LLPs, a second crucial dis-

๏ LHCb is moving HLT farm out of the detector area 

๏ Free space could be used to host a small Mathusla-like 
detector

New ideas: Codex

 46https://arxiv.org/pdf/1708.09395.pdf

๏ Could be used 
to probe light 
long-living 
particles 
produced at LHC 
(e.g., in b 
decays)
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FIG. 3. CODEX-b reach for B ! Xs' in the s2✓–m' plane.
Solid (dashed) blue line assumes 100% (Tab. I) tracking e�-
ciency. Dot-dashed line indicates the reach for L = 1ab�1.

by e↵ects of hadronic resonances when m' ⇠ 1 GeV, as
well as threshold e↵ects. The theory uncertainties in this
region are substantial, and we use the data-driven result
from [92, 93]. Another common choice is the perturba-
tive spectator model [94]. The di↵erence in reach pre-
dicted by both models can be rather large, especially in
the region around the masses of the f0 mesons. As an
example, for m' = 1 GeV the branching ratio is related
to the lifetime via Br[B ! Xs'](c⌧'/1 m) ⇠ 6 ⇥ 10�10

in the data driven model, while the analogous number in
the spectator model is 2 ⇥ 10�8.

We generate a B meson sample with Pythia 8, enforc-
ing the exclusive decay B ! K' as a proxy to estimate
the box fiducial e�ciency for B ! Xs'. We do not in-
clude muon shadow contributions, as the muon energy
in these LLP decays is typically low, Eµ . few GeV, so
that muon penetration (scattering) through the concrete
shield might be unacceptably low (high) for a decay ver-
tex reconstruction. The peak box fiducial e�ciency is
⇠ 10�4 at c⌧' ⇠ 10 m: The LLPs captured by the trans-
versely located box are typically only mildly boosted.

In Fig. 3 we show the CODEX-b reach (exclusion at
greater than 95% CL) on the Higgs mixing portal s2

✓–m'

parameter space, compared with existing bounds from
CHARM [95] and LHCb [41], as well as projected reaches
for LHCb, MATHUSLA and SHiP. We assume a bb̄ pro-
duction cross-section of 500µb. For the projected LHCb
reach we rescaled the existing B ! K(' ! µµ) limit [41]
under the (optimistic) assumption of zero background,
implying that the limit on the fiducial rate scales lin-
early with the integrated luminosity. (A similar limit
from B ! K⇤(' ! µµ) is slightly weaker [42].) The
sensitivity of MATHUSLA to this signature has concur-
rently been pointed out in [96]. The curve here is our own
recast of the MATHUSLA reach and agrees with the re-
sults in [96], up to small di↵erences which can attributed

to slightly di↵erent assumptions regarding the width of
'. The original SHiP projection [97] was computed us-
ing a perturbative spectator model for the width of '.
To properly compare all experiments, the curve shown
in Fig. 3 is a recast to the data-driven model in [92, 93],
where we use the e�ciency maps provided in [97].

The lower extent of the reach in s2

✓ is determined by
the total number of beauty hadrons and the CODEX-b
fiducial e�ciency, while the upper extent of the s2

✓ reach
is controlled by the ' lifetime: A larger s2

✓ implies a larger
rate of ' production along with a shorter ' lifetime, such
that most '’s decay before they reach the detector. One
finds that CODEX-b would significantly extend the reach
of LHCb, and complement part of the projected param-
eter reach for SHiP as well as for MATHUSLA.

One may also consider more general portals that do
not feature the fixed branching ratio-lifetime relations
predicted by the simplest Higgs portal models. In Fig. 4
we show the branching ratio reach for such theories, for
various ' mass benchmarks. Compared to LHCb, which
searches for B ! K(' ! µµ), a key advantage is that
the reach is not sensitive to the model-dependent muonic
branching ratio, only requiring instead that the final
states are trackable. (Decays into neutral hadron pairs,
such as ⇡0⇡0, cannot be seen without calorimetry, how-
ever such final states comprise at most O(30%) of final
states for 2m⇡ < m' . 1 GeV and typically otherwise
comprise a much smaller contribution.) While the muon
branching ratio is typically O(1) for m' < 2mK from
kinematic considerations, at higher masses this branch-
ing ratio may drop precipitously to the sub-percent level.
As an example, we show the projected LHCb reach in
Fig. 4 for m' = 0.5 GeV compared to m' = 1GeV.

B. Exotic Higgs decays

Exotic Higgs decays to two dark photons may be gener-
ated by a kinetic mixing portal (e.g. [59–62]). In the short
lifetime limit, dark photons can be searched for with the
main LHCb detector, in D⇤ decays [101] or with an in-
clusive search [102]. To estimate the CODEX-b fiducial
e�ciency, we simulate gluon fusion Higgs production at
IP8 with Pythia 8, with subsequent h ! �d�d decay.
The dark photon branching ratios to various SM final
states are approximated from existing e+e� data [103],
which is relevant if one exploits the muon shadow. In
Fig. 5 we show the expected reach in Br[h ! �d�d] for
m�d = 0.5 and 10 GeV benchmarks as a function of dark
photon lifetime, for both the CODEX-b fiducial volume
and for the case that the muon shadow can be used. For
the 0.5 GeV benchmark, the larger �d ! µµ branching
ratio enhances the reach of the muon shadow, compared
to the 10 GeV case.

A displaced vertex search at ATLAS/CMS has geo-
metric acceptance ⇠ 1 (normalized to 4⇡), and approxi-
mately 10 times higher luminosity. Other than the trig-
ger challenges associated with LLPs, a second crucial dis-
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FIG. 4. Inclusive CODEX-b B ! Xs' reach (solid lines).
The shaded regions (dashed lines) indicate current LHCb lim-
its (300 fb�1 projection) from B ! K(' ! µµ), rescaled to
the inclusive process using the ratio of Eq. (4) and the the-
ory predictions for the exclusive branching ratio [98, 99], and
assuming Br[' ! µµ] ' 30% and 10% for m' = 0.5 GeV
and 1GeV, respectively. Approximate current [74] and Belle
II projected [100] limits from B ! K(⇤)⌫⌫̄ precision measure-
ments are also shown (gray shading and dashed line).
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FIG. 5. Higgs decay to dark photon reach, using the CODEX-
b fiducial volume alone and with the muon shadow ‘µSh’.
The �d ! µµ branching ratio is taken from e+e� data [103].
Also shown is the CODEX-b reach with L = 1ab�1 and a
larger box, should DELPHI be removed. The approximate
reach for MATHUSLA (gray dotted), rescaled from [54], and
h ! invisibles is also shown (horizontal gray dashed) [104].

tinction is that the calorimeters comprise only ⇠ 10� of
shielding compared to the 32� shield in the CODEX-b
setup. Searches for light displaced objects in the AT-
LAS/CMS muon system are therefore expected to su↵er
from significant backgrounds from punch-through jets.
To heavily reduce these backgrounds, it is often neces-
sary to require two displaced objects, which is a signif-
icant penalty in reach for the long lifetime regime. We

compare our m�d = 10 GeV benchmark point with the
projected sensitivity of searches for one and two displaced
jets [105]. The latter estimate is based on the existing
ATLAS displaced dijet search [106]. Its sensitivity deteri-
orates when the displaced vertices generate a low number
of tracks, which occurs both for m�d < 10 GeV and for
models with small hadronic branching ratios. Neither
di�culty applies to CODEX-b.

For our m�d = 0.5 GeV benchmark, we compare with
the ATLAS search for a pair of displaced lepton jets [107].
This search is currently systematics limited, so that the
range for our estimate of the HL-LHC ATLAS reach in
the left panel of Fig. 5 is bounded above by the current
expected limit [107] and bounded below by the current
expected limit, rescaled under the assumption that the
systematic uncertainties can be reduced with a factor of
five. We expect backgrounds for a single displaced dilep-
ton search would be prohibitively large.

C. Mass measurement

Aside from the discovery potential outlined above,
CODEX-b should also be capable of measuring the veloc-
ity of the LLP. For a given assumption on the production
mechanism, this then allows for a mass measurement of
the new state on a statistical basis. As is well known (see
e.g. Ref. [55]), the geometry of two-body �d/' decays to
massless final states can provide information about their
velocity and the ability to discriminate between di↵erent
�d/' masses. More complex final states may be possi-
ble as well, but in this proof-of-concept study we restrict
ourselves to two body decays only.

The � resolution which can be achieved with our simple
tracking layout, using geometric information only and
assuming massless final states, is shown in Fig. 6. It is
Gaussian for the h ! �d�d benchmarks, while in the
B ! Xs' case it is non-Gaussian and biased, because
the ' decay products are so slow that the approximation
of � = 1 begins to break down for them. Nevertheless
we can still reconstruct the �d/' velocity to better than
1% in all cases, which in practice means that the ability
to discriminate between di↵erent �d/' masses is largely
dominated by the actual distribution of �d/' velocities
for a given mass, and not by the detector resolution.

The corresponding distribution of reconstructed �d/'
boosts is shown in Fig. 7 for di↵erent B ! Xs' and
h ! �d�d masses and lifetimes. We achieve good discrim-
ination across a wide range of masses in the h ! �d�d

case, but perhaps more surprisingly we also have some
discriminating power between di↵erent ' masses for the
B ! Xs' benchmark.

This approach to a mass measurement uses only spa-
tial information, but complementary information may be
provided by using timing information from the RPC sta-
tions to measure the velocity of the decay products. Such
a mass reconstruction can be useful to discriminate be-
tween slow-moving new states, or to veto unexpected
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FIG. 1: Schematic drawings of the LHC ring and the current very forward infrastructure down-
stream from the ATLAS and CMS interaction points, along with the representative far and near
on-axis detector locations for FASER. Note the extreme di↵erence in the transverse and longitu-
dinal scales in the lower figure. Details of the geometry and sample tracks have been taken from
Refs. [31–33]. See the text for details.

IPs in the very forward direction, including charged pions, muons, protons, neutrons, and
photons, and also possibly dark photons and other new particles, propagate inside the beam
pipe. About 20 m downstream they encounter the TAS front quadrupole absorber [34, 35],
a 1.8 m long copper block with an inner radius of 17 mm, which shields the superconducting
quadrupole magnets (Q1, Q2, and Q3) behind it from the forward radiation. The two
proton beams are then separated by the inner beam separation dipole magnet D1 at a
distance of 59� 83 m downstream [36]. The D1 magnet also deflects other charged particles
produced at the IP. Note that multi-TeV charged particles are only slightly deflected from
the proton beam and therefore can travel ⇠ 10�100 m before colliding with the beam pipe,
as indicated by the blue sample tracks in Fig. 1. At the distance of ⇠ 140 m downstream,
the neutral particles produced at the IP are absorbed by the 3.5 m thick TAN neutral
particle absorber [37]. In passing through the TAN, the two proton beams transition from
a single beam pipe for both beams to individual beam pipes for each beam. At this point
the horizontal separation between the inner edges of the beam pipes is 96 mm [38]. Finally,
153 � 162 m downstream, the proton beams encounter the outer beam separation dipole
magnet D2, which aligns the proton beams to be parallel. After the D2 magnet the proton
beams have a horizontal separation of 194 mm [36].

New light particles may be predominantly produced in the very forward direction with
very little transverse momentum relative to the beam collision axis. A forward detector,
placed on the beam collision axis downstream from the IP, can then be sensitive to such
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FIG. 6: Left: Nsig, the expected number of signal events, for two representative (mA0 , ✏) points
as a function of the distance between the IP and detector, Lmax, for the near and far detector
benchmark design (see text). Right: Nsig for the far detector location as a function of the detector
radius R.

but ignored the angular cut. We see that the dark photon signal from meson decays is
characterized by an energy EA0 & 1 TeV and an angle ✓A0 < 1 mrad. In contrast, the dark
photon bremsstrahlung signal also occurs at larger angles ✓A0 > 1 mrad. However, both of
them will eventually be limited by the experimental cut on ✓A0 that comes from the detector
design, ✓A0 < ✓

max
A0 = 20 cm/400 m = 0.5 mrad.

In Fig. 6 we explore the far detector signal rate’s dependence on the various detector
parameters, properly taking into account both the decay length and angular acceptance
conditions. In the left panel, we examine the signal yield as a function of Lmax, keeping the
remaining detector characteristics in Eq. (12) fixed. Even for high-momentum dark photons
with pA0 � 100 GeV, the signal decreases exponentially with Lmax, so for these dark photon
models, it is preferable to place the detector as close as possible to the IP. In the right panel,
we fix Lmax = 400 m, but vary the detector radius R. As can be seen, the benchmark radius
R = 20 cm captures most of the dark photon decays.3 Increasing R above 20 cm would not
improve the yield much, but decreasing it below 10 cm would result in a rather drastic drop
in sensitivity. Both e↵ects can be understood by referring to Fig. 5: varying R changes the
angular coverage of the detector and moves the “far location” line in the figure to include
more or fewer events for a given detector location.

We now consider the after-TAN, near location described in Sec. II. This location is closer
to the IP, and therefore increases the signal acceptance of the detector. In this unique
location, the TAN shields the detector from the IP direction. On the other hand, requiring
FASER to be positioned between the TAN, the D2 magnet, and the two beam pipes limits

3 Note that the flattening of the bremsstrahlung contribution at large R is due to the transverse momentum

cut imposed on the dark photon pT < 10 GeV, which ensures the validity of the FWW approximation.

This cut has no impact on our sensitivity reach plots, as discussed in Appendix B.
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FIG. 9: Number of signal events in dark photon parameter space for the far (left) and near (right)
detector locations, given an integrated luminosity of 300 fb�1 at the 13 TeV LHC. The di↵erent
colors correspond to the three production mechanisms: ⇡0

! A0� (red), ⌘ ! A0� (orange), and
proton bremsstrahlung (green). Contours represent the number of signal events Nsig. The gray
shaded regions are excluded by current experimental bounds. The black stars correspond to the
representative parameter-space points of Eq. (8).

benchmarks for an integrated luminosity of L = 300 fb�1 (solid) and L = 3 ab�1 (dashed).
It is based on the assumption that background can be distinguished from signal by employing
a combination of the cuts discussed in Sec. VI and that the systematic uncertainty of the
signal rate is small. Given this assumption, 95% C.L. exclusion contours correspond to
Nsig = 3 contours. It is important to note, though, that even a relatively large number of
background events above the simple estimates from Sec. VI would not drastically reduce
the reach in parameter space, provided the background is well-understood, especially in the
upper part of the exclusion regions with the kinetic mixing parameter ✏ ⇠ 10�3

�10�5 that is
of most interest to us. This is because, in this region of the dark photon parameter space, the
number of expected events grows exponentially with decreasing (✏mA0)2 as discussed below.
For comparison, in Fig. 10 we also show the expected reach of other proposed searches for
dark photons with small ✏, namely LHCb [78, 79], HPS [80], SeaQuest [60], and SHiP [65].

To better understand the results shown in Fig. 10, it is helpful to analyze the dependence
of Nsig on the dark photon parameters mA0 and ✏ in various limits. To this end, let us recall
that

Nsig = L
int
�pp!A0XP

det
A0 (pA0 , ✓A0) / L

int
✏
2
e
�Lmin/d̄

h
1� e

�(Lmax�Lmin)/d̄
i
, (19)

where d̄ ⇠ ↵
�1
EMpA0✏

�2
m

�2
A0 and, therefore, we obtain

Nsig /

(
L

int
✏
2
e
�Lmin/d̄ for d̄ ⌧ Lmin

L
int

✏
2 Lmax�Lmin

d̄
for d̄ � Lmin .

(20)

In the upper part of the exclusion regions in Fig. 10, the characteristic dark photon decay
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๏ Prompt analyses are sensitive 
to small displacements (i.e., 
to small lifetime) 

๏ This is why some traditional 
prompt analysis was recasted 
to long-living particle 
scenarios 

๏ The result is already good in 
probing large portion of 
parameter space 

๏ The deterioration of 
sensitivity with lifetime is 
less pronounced than what 
would expect

Reinterpreting Prompt Searches
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๏ LHC (SUSY) searches are much more than MET-based searches 

๏ RPV SUSY: single & double production == new resonance searches 
(bump hunts, boosted jets, …) 

๏ Large set of exotic signatures emerging from long-living particles 

๏ SUSY compressed spectra 

๏ Dark sector 

๏ Searches program in place 

๏ New ideas to extend LHC reach with new detectors 

๏ But don’t underestimate the sensitivity of even the more classic 
searches

Summary of Episode iii
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