Plans for ProtoDUNE-SP Commissioning and Run

Flavio Cavanna **DUNE Collaboration Meeting** FERMILAB - 15 May 2018

EHN1 extension -

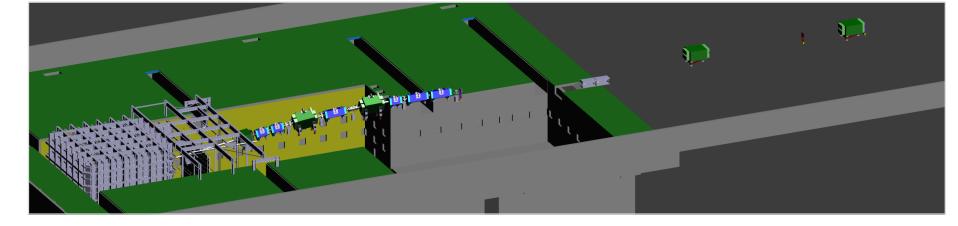
two weeks ago...

May 15, 2018 Flavio Cavanna | DUNE CollMtg: Plans for ProtoDUNE-SP Commissioning and Run

2

🗱 Fermilab 🕬

EHN1 extension -



today

3 May 15, 2018 Flavio Cavanna | DUNE CollMtg: Plans for ProtoDUNE-SP Commissioning and Run

🛟 Fermilab 🕬

protoDUNE-SP Goals

- Prototyping production and installation procedures for DUNE far Detector Design [task of the ongoing effort]
- Validate design from perspective of basic detector performance
- Accumulate test-beam data to understand/calibrate response of detector to different ptcl. species
- Demonstrate long term operational stability of the detector

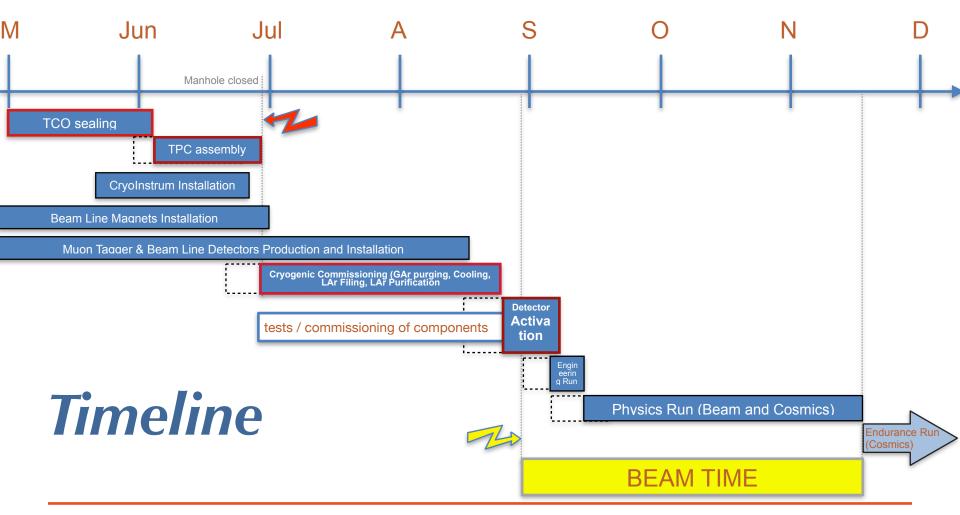
and the Programme:

- 2018: (*) Detector activation, **Test-Beam Run** + Cosmics
- 2019: (**) endurance Run with Cosmics (long term stability)**
- 2020: continuing Operation (Cosmics) if desired
- 2021: keep open the option of recording Test Beam data after CERN LS2
- 2022: no Operation is foreseen in and beyond 2022.

(*) Detector commissioning and activation, data acquisition with Beams and the prompt execution of data processing and reconstruction have the highest priority in DUNE

(**) Note about the Long-Term Stability Run 2019

The long term stability Run with Cosmic - 6 to 12 months extending in 2019 has been communicated/proposed to CERN SPSC on April 20


The plan for the long term stability Run is not finalized yet

- minimal goal: maintain detector active and acquire short Cosmic Run every day
- dedicated tests at different cryogenic system and detector operating parameters presumably to be included in the plan

Allocation of Resources for Detector Operation and Computing in 2019 under discussion

😤 Fermilab 🛽

Installation, Commissioning and the 2018 Run

May 15, 2018 Flavio Cavanna | DUNE Co

DUNE CollMtg: Plans for ProtoDUNE-SP Commissioning and Run

🗱 Fermilab 🕬

ProtoDUNE-SP Operation Plan

The timeline for operations with beam is very limited \implies need to have a plan which insures the highest quality detector performance and data taking efficiency.

The development of the plan is based on three main guidelines:

- take advantage of the highly qualified expertise of system experts, in particular those based at CERN and directly involved in detector construction, test, integration, installation and in data acquisition, monitoring and controls.
- provide opportunity for DUNE collaborators who have not been intimately involved in the detector construction and integration to gain experience with the liquid argon detector technology (valuable for the DUNE far detector design and construction).
- plan is subdivided into two major phases (after manholes closed by End of June):
 © Cryogenics Commissioning, BeamLine Commissioning, and Detector Commissioning&Activation
 - Seguration Section Section

Detector Commissioning/Activation "inside the Cryostat" teams defined for:

- High Voltage
- Beam Plug
- APA Wire Bias
- Cold and Warm electronics
- Photon Detectors and R/O Electronics
- Temperature Monitoring
- Purity Monitoring
- Gas Analyzers
- Cameras
- Grounding and shielding
- Data Acquisition
- Detector Controls System

Requested :

- Contact person
- Expert list
- Tasks and procedures

Responses have started

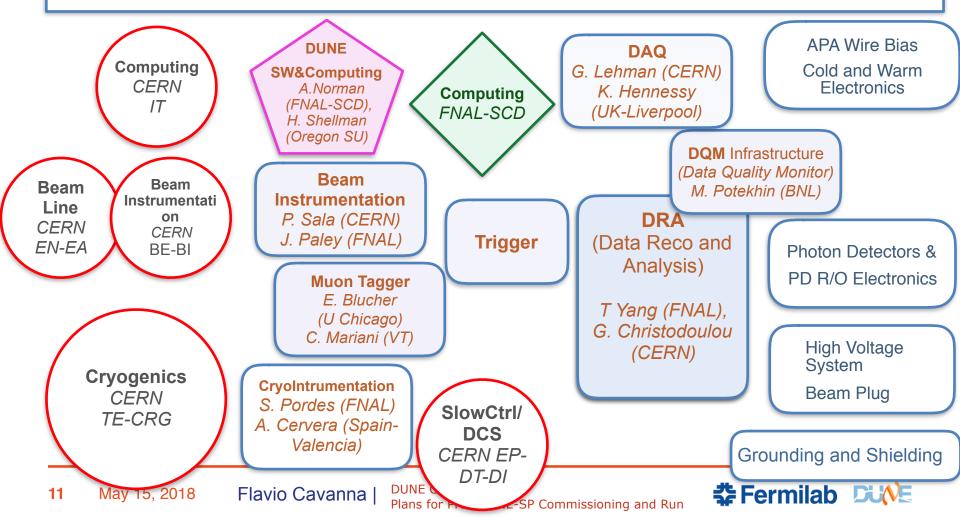
🗱 Fermilab 🕬

As well as for

- Commissioning operations "outside the Cryostat" and for start-up Data-taking:
 - Beam Instrumentation
 - Muon Tagger
 - Trigger
 - Data Quality Monitor
 - Computing
 - Data Reconstruction and Analysis
 - Beam Line
 - Cryogenics

Responses on Plans and Procedures will enter into a *master file* where a global sequence of events and activities will be coordinated so that prerequisites and exclusions can be met.

Organizational Structure on the ground


CERN Neutrino Platform M. Nessi (CERN)

ProtoDUNE-Single Phase

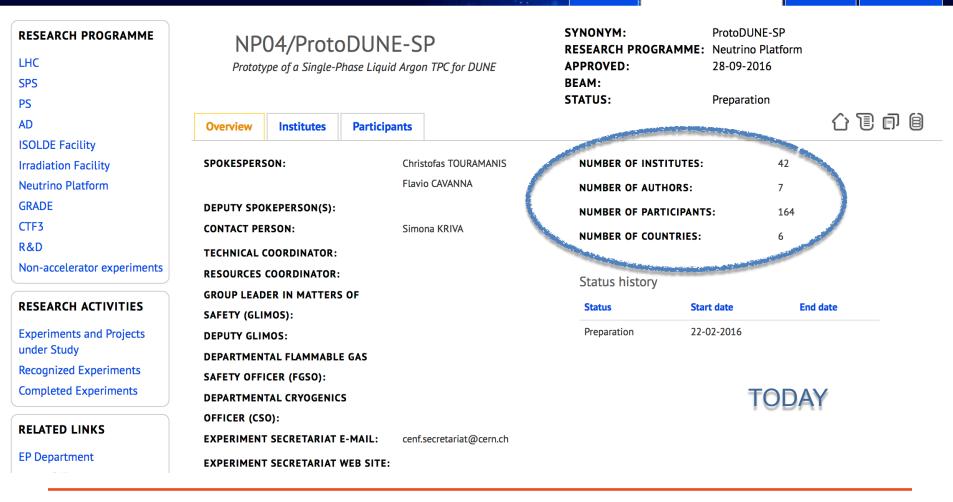
Coordinators

Liaison w/ CERN IT, FNAL SCD, DUNE Computing in matter of Computing Resources (A. Dell'Acqua/CERN)

Commissioning Leader, Run Coordinator (F. Resnati/CERN, R. Acciarri/FNAL) + Deputy (A.Zani)

The CERN Experimental Programme

Grey Book database


» NP04

Welcome

Experiments & Projects

Find in Greybook..

Participants Institutes

Plan&Coordination of Commissioning/Activation

ProtoDUNE-SP Detector Activation Preparatory Meeting:

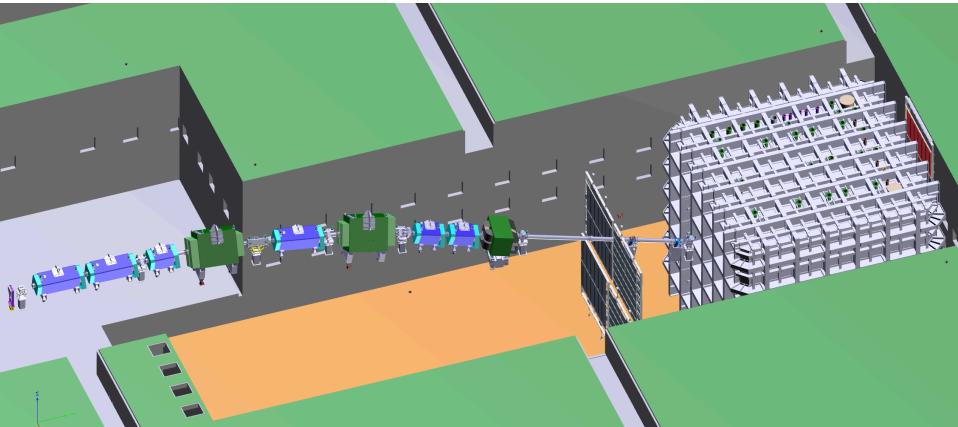
Thurs. 9:00 am CDT (16:00 CET) - Weekly

[org: F. Resnati/CERN, R. Acciarri/FNAL - Commissioning Leader, Run Coordinator]

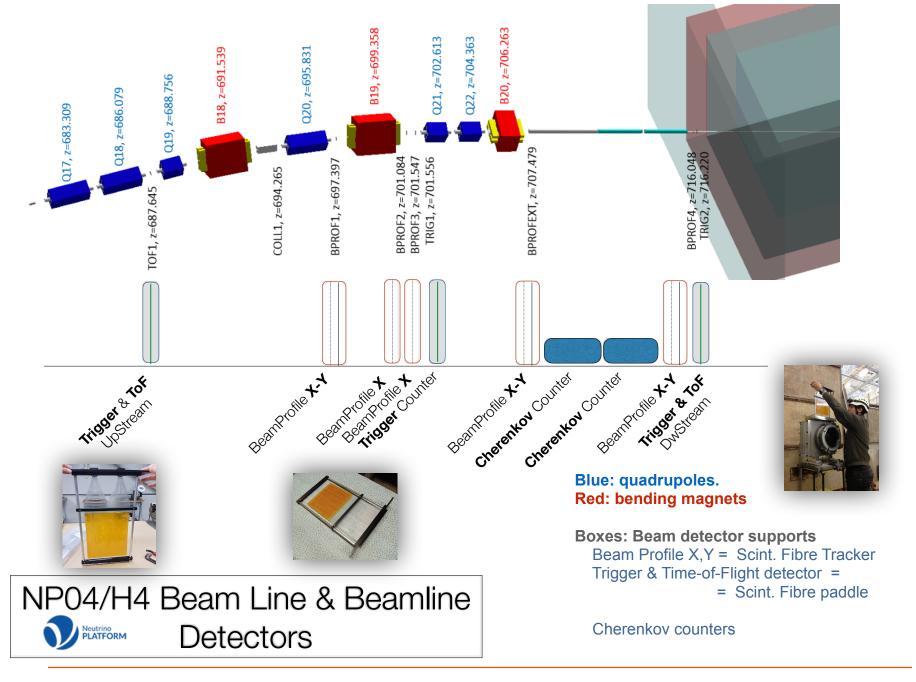
CERN Specialized Groups

Home Experiments DUNE Prototypes ProtoDUNE single phase (NP04)

Detector Commissioning and Activation Meeting

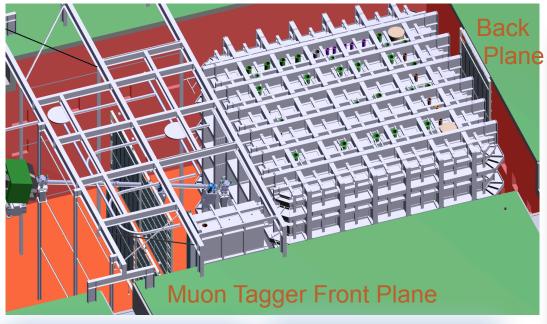


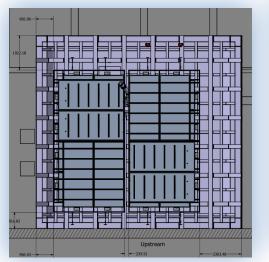
Detector Commissioning and Activation Meeting

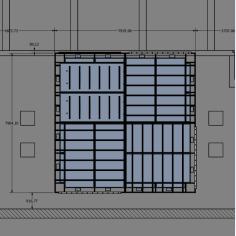

outside protoDUNE Cryostat

External Beam Line, Beam Detectors and Muon Tagger

- many opportunities for fast trigger combinations from Beam instrumentation -Muon Tagger (and internal Photo-Detector)
- opportunity to trigger or veto TPC readout for beam halo muons


03.20.18 Flavio Cavanna | ProtoDUNE-SP Installation at CERN

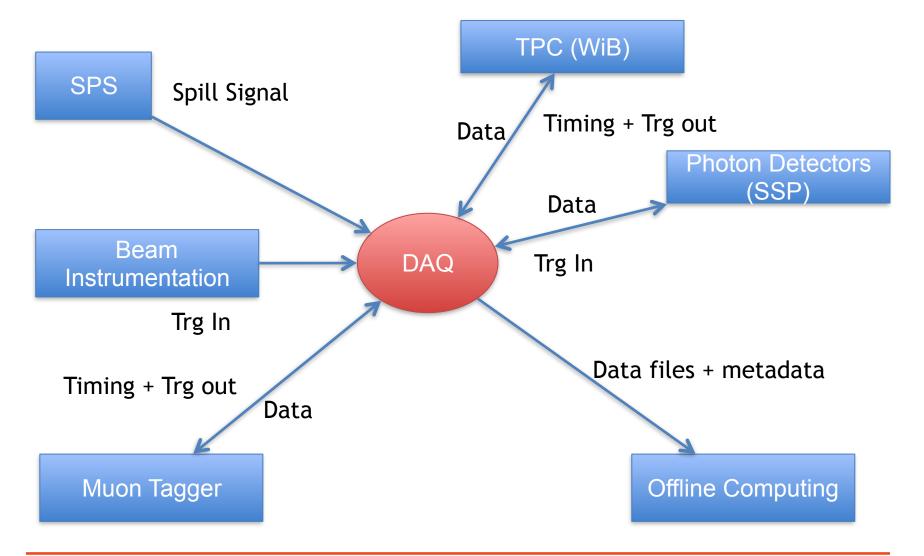

15


🗱 Fermilab 🕬

Muon Tagger

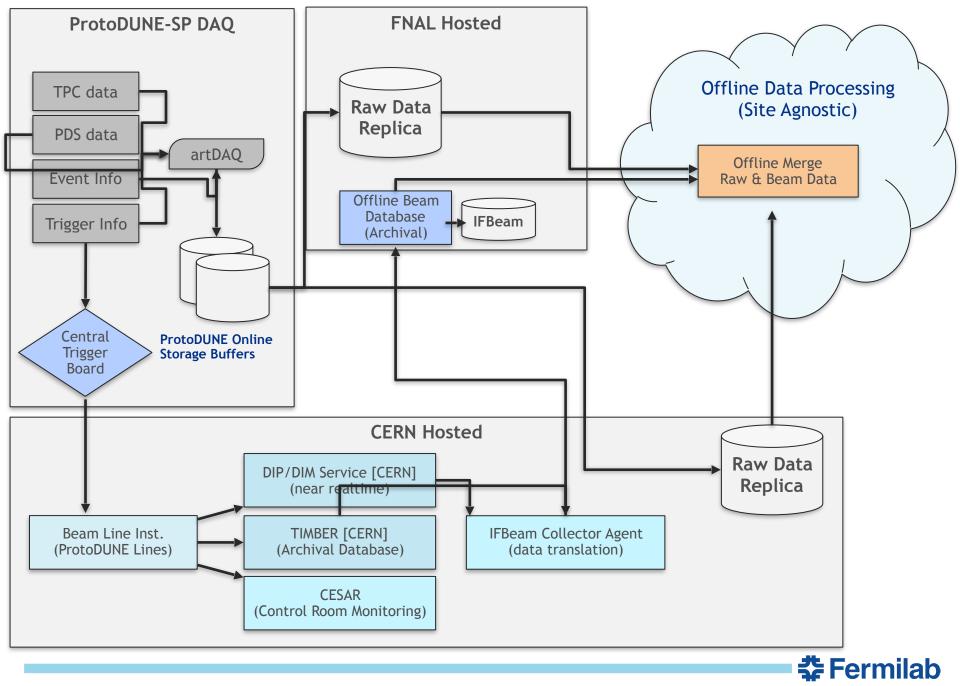
U of Chicago, Virginia Tech, U Minnesota, U Rochester, FNAL

Muon Tagger Modules


🗱 Fermilab 🕬

16 May 15, 2018

Flavio Cavanna | DUNE Co


DUNE CollMtg: Plans for ProtoDUNE-SP Commissioning and Run

Interfaces

¹⁸ Example of an Integrated System: ProtoDUNE Beam Inst. Readout for Offline -

Cryogenic Commissioning Plan

	CRYOGENICs				
Task	Duration	Specs	Tech Resp	Shift Resp	Monitoring
GAr Purging	1w + 1w (conting.)	 20 Vol/day leaks checks and repairs 	CERN-NP	CERN-NP	
Safety Clearance	1d	All documentation ready	CERN-NP		
Cooling	1 w	- 1 K/hr, Δ T≈ 200 K	CERN-NP CERN TE-CRG	CERN-NP	Temp
LAr Filling	3 w + 1 w (conting.)	 ~550 kL 2 trucks/day into 2x20000 L storage dewars 40000L/day, 5 days/week 	CERN-NP cern te-crg	CERN-NP + ProtoDUNE-SP	Temp T-Gradient LAr Level
LAr Recirc. & Purific.	1w (conting.)	<i>Goals:</i> Stable Cryo Cond. ⊤ _e ≈2ms	CERN-NP pDUNE-SP	ProtoDUNE-SP + CERN-NP	T-Gradient LAr Purity

Start: last week of June End: last week of Aug.

3+ weeks built-in contingency

🛠 Fermilab 🕬

Plan for ProtoDUNE-SP Operation

Phase 1: Detector Commissioning and Activation

System Experts on-site at CERN

[period of stay to be defined in the Commissioning Plan and Procedure, Approved Support for travel and accommodations for non-resident provided by the DUNE project]

July 2018

In parallel to (and within the limitations from) the concurrent Cryogenic Commissioning operations,

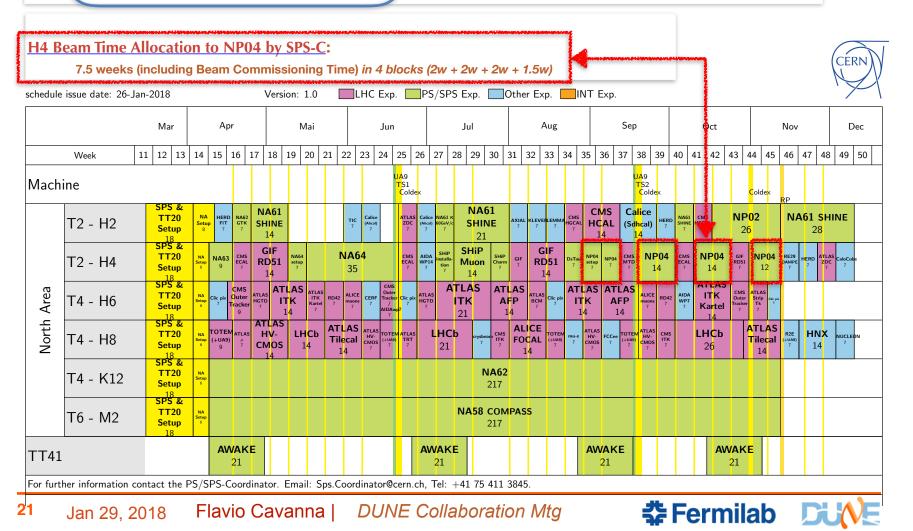
the focus of activity will be to:

- operate and run CryoInstrumentation (T-Profilers, PurMon, Cameras, GasAnlysers)
- commission as much of the detector elements as possible inside and outside the cryostat:
 - from cathode (moderate) HV ramp to bias V on the wire planes
 - from APA-CE performance tests and monitor noise levels
 - from systems local read-out to full DAQ r/o chain tests
 - from available Beam Detectors and Muon Tagger Modules tests to Trigger Logic setting and debugging
- develop and exercise the tools for detector and beamline monitoring (DQM and DCS)

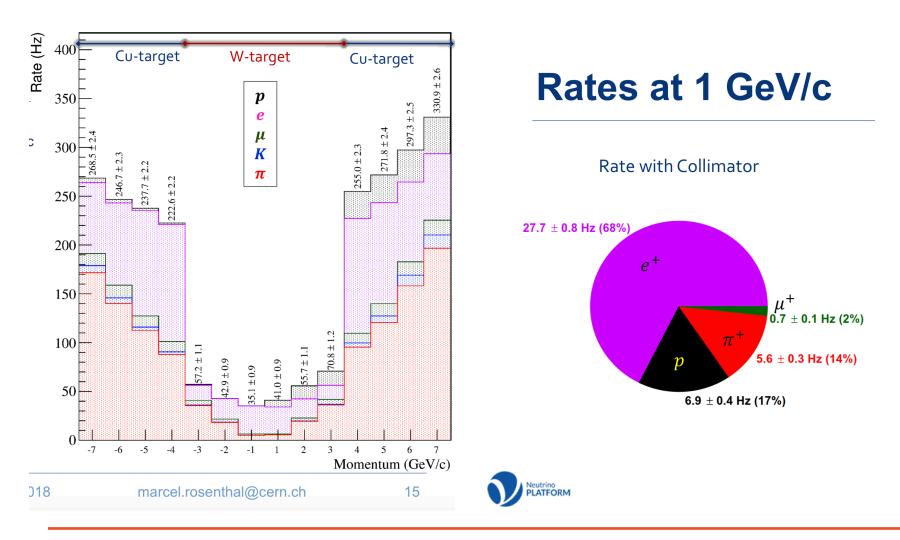
August 2018

The focus of activity will be :

complete cryogenic commissioning and LAr purification
 Beamline and beamline instrumentation commissioning
 LAr Detector Commissioning


LAr DETECTOR	Commissioning		
Task	Duration		
Cathode HV ramp	1 w		
Wire Planes	I VV		
V-bias			
CE activation	+		
PD activation			
DAQ activation			
On-Line Mon	1 w		
DQM	(conting.)		
Data Archiving	0		
completed by Sept. 5 - possibly a week earlier			

🛟 Fermilab 🕬


• Beam operations:

August 29, 2018 (Start)

November 11, 2018 (End)

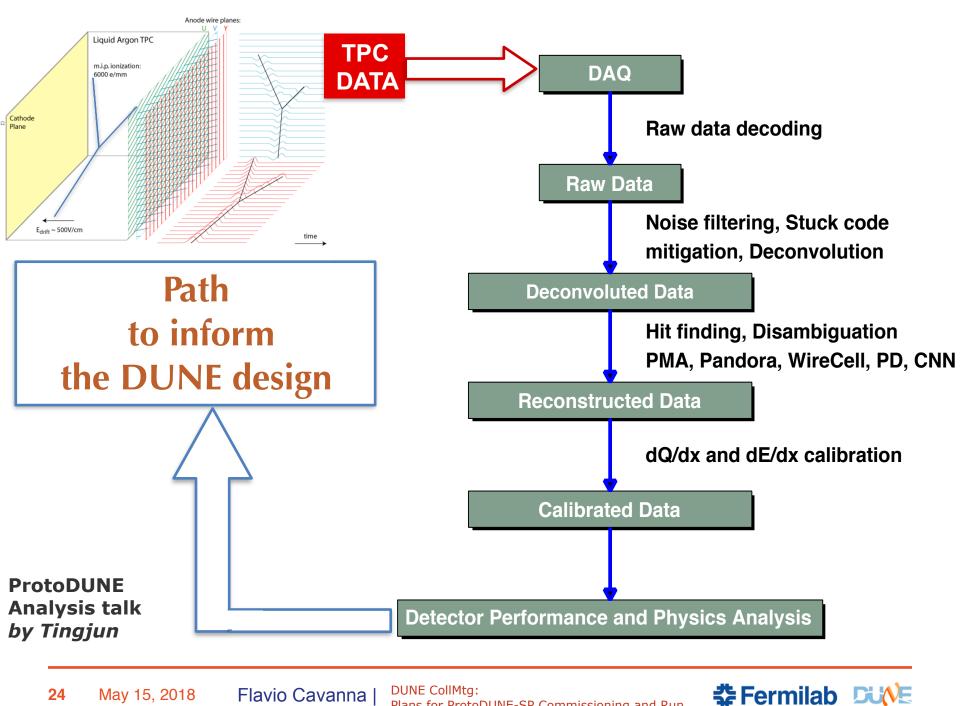
Expected Rates (H4 beam line MC Calculation): normalized to 10⁶ pions on target per spill (4.8 s)

22 May 15, 2018 Flavio Cavanna | Dul

DUNE CollMtg: Plans for ProtoDUNE-SP Commissioning and Run

• Engineering Run:

- Beam-line detectors activation and DAQ sync,
- Beam Trigger activation/test/debug,
- Secondary (Pion) Beam Intensity Tuning (measure/mitigation Muon Halo in LArTPC) ⇒ StartUp Physics Run


• Physics Run [expected 3000 spill/day]:

- →Hadron Beam Goals:
 ≥ 500 k Pion evt per momentum setting
 ≥ 100 k Proton evt per momentum setting
- Electron Beam Goal:
- ≥ 75 k Electron evt per energy setting

Beam Setting (Mom, Sign)	Beam Rate		Beam Time
2 GeV/c – Negative	27 Hz	50% <i>π</i>- , 50% e-	1 week

	Hadron Beam	Cu Target	
Beam Setting (Mom, Sign)	Accumul. Stat. (goal)	Trig. Rate/Beam Rate	Beam Time
2 GeV/c - Positive	750 k [500 k π]	25 Hz / 38 Hz	1 week
3 GeV/c - Positive	750 k [500 k π]	25 Hz / 56 Hz	
no beam	-	-	1 week
1 GeV/c - Positive	1 Μ [500 k π]	25 Hz / 27 Hz	2 week
no beam	-	-	1 week
4 GeV/c - Positive	600 k [500 k π]	25 Hz / 196 Hz	
5 GeV/c - Positive	600 k [500 k π]	25 Hz / 200 Hz	2 week
6 GeV/c - Positive	600 k [500 k π]	25 Hz / 226 Hz	
7 GeV/c - Positive	600 k [500 k π]	25 Hz / 252 Hz	
no beam	-	-	1 week
	Electron Beam	Pb Target	
Energy Ramp: 0.5, 0.6, 0.7, 0.8, 0.9, 1., 2., 3., 4., 5., 6., 7. GeV	75 k per En. setting 900 k Tot.	25 Hz / 60 Hz	1.5 week

Plan for ProtoDUNE-SP Operation

Phase 2: Data Taking Run with Beam (and Cosmics)

September - October - November 2018

2 shifters / 3x8hr shift / 24h/7d Shift Team: Expert Shifter (ES) + basic shifter (S) Shifts will be in the EHN1 Control Room.

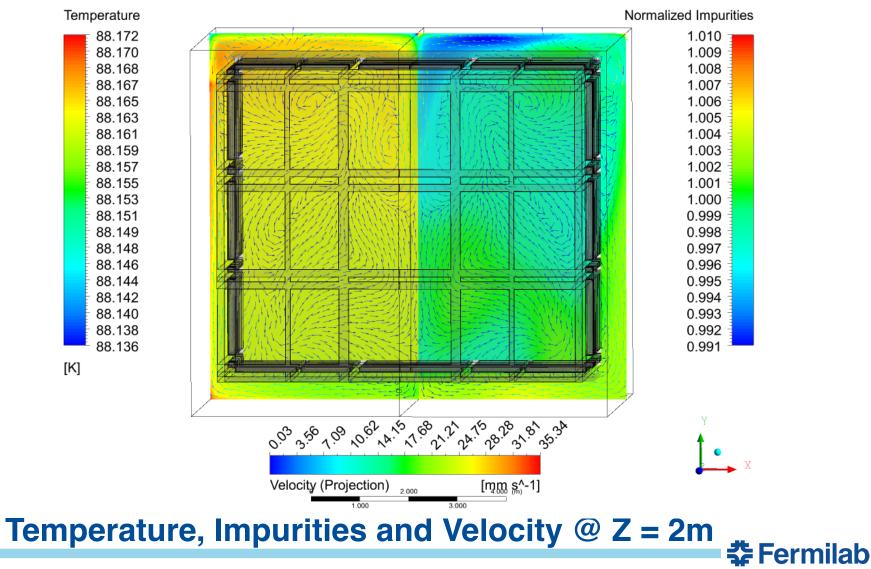
Shifters (who are not System Experts) are expected to provide for their travel and daily expenses while at CERN through their home institution funding; however, the DUNE Operations Budget for ProtoDUNE will provide an apartment where temporary shifters may stay while on shift.

🛟 Fermilab D

Availability and sign-up information will be managed by Maxine Hronek

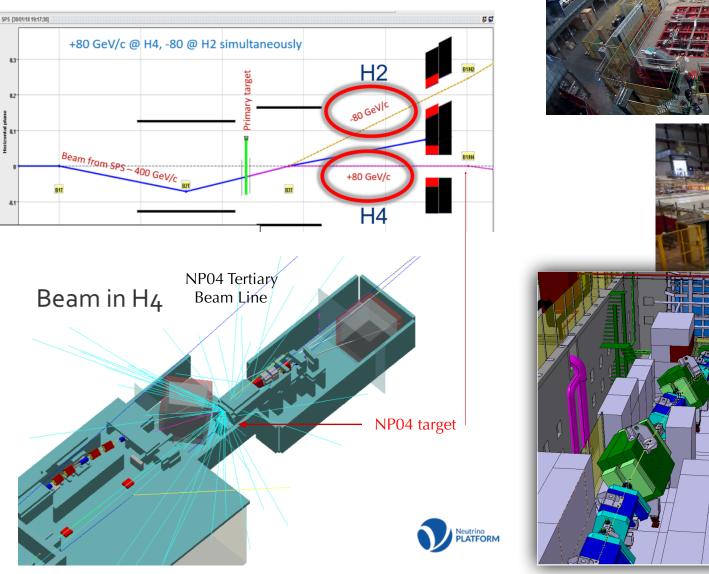
SUMMARY

- ProtoDUNE SP is transitioning from Construction/Assembly to Operation (Commissioning and Run).
- The plan for Cryo-Commissioning is in place, the plan and procedures for detector commissioning&activation is being developed, SPS Beam Time is allocated, basic Run Plan defined - fine tuning & swap w/ other SPS users or parasitic time under discussion
- Highest priority:
 - DAQ and Off-line SW readiness for timely exploitation of beam and cosmic data.


7 Fermilab

- Careful and prompt evaluation of Detector Performance to inform DUNE design and TDR.
- Several Physics topics of interest for longer term studies and Analysis

2703.20.18Flavio Cavanna | DUNE/LBNF DOE IPR

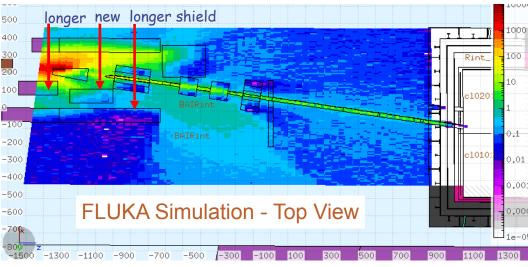

ProtoDUNE Liquid Argon Flow Simulations

1/12/2016

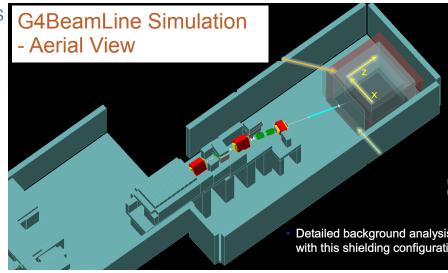
H4 (Tertiary) Beam Line

CERN SPS - North Area

Fermilab DUNE

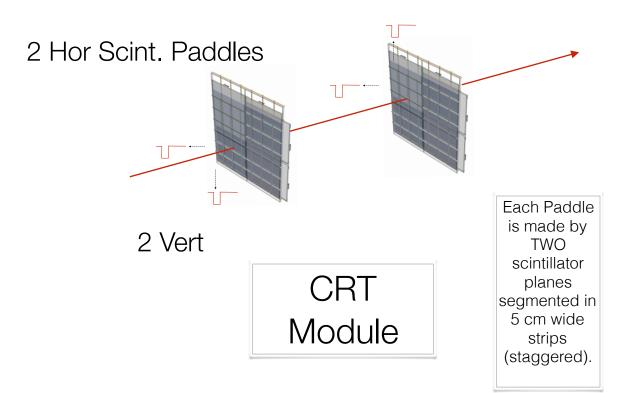

I I

ProtoDUNE-SP Instrumentation DEEP UNDERGROUND NEUTRINO EXPERIMENT


-Beam Instrumentation:

-H4 beam line model including concrete shielding: substantial reduction of background particle rate at TPC front

- -Precise field map calculation for H4 magnets,
- important for the muon background calculations
- -Exact bending magnet geometry completed.
- -Optimization of **beam pipe geometry** and dimensions
- -Final H4 **beam position** decision taken by ProtoDUNE-SP (NP04) Collaboration



External Muon Tagger

Trigger logic using coincidence signals from upstream and downstream modules

A FAST NIM signal is generated when a coincidence is found btw the two layers of the hit paddle

• during beam spill (BeamOn):

- → Muon Tagger standalone trigger ⇒ hormuon halo trigger for
 LAr TPC Calibration (elifetime, SCE)
 - → in "anti-combination" w/ beam counter trigger ⇒
 veto TPC readout in case of pile-up or halo/punchthrough

• out of beam spill (CosmicOn):

- Muon Tagger standalone trigger ⇒ hormuon cosmic trigger for LAr TPC Calibration (e-lifetime, SCE)
- → in combination w/ internal PhDet trigger ⇒ special cosmic event trigger (cosmic ray induced muon bundles or electromagnetic cascades in atmosphere)

Summary: (possibly available) Fast Trigger Inputs

Input	Source	Input	Source	Input	Source	
BeamON	Spill beam gate	CosmicON	Cosmic post-beam gate			
Trig1, Trig2	BI: Trigger Counters	Q1-4, USMTModS1 Q1-4, USMTModS2 Q1-4 DSMTModJ1 Q1-4, DSMTModJ2		PDAPAS1-3 PDAPAJ1-3	· · · · · · · · · · · · · · · · · · ·	
USTOF,	BI: Upstream, Downstream Time of		Q1-4,	CRT: Upstream, Jura Up/ Dw Module Quadrant 1-4, Upstream, Saleve Up/Dw		bars)
DSTOF	Flight		21-4, Module Quadrant 1-4	MichelAPA	51- PD: APA Jura Side 1-3, APA Saleve 1-3	
BPXY1, BPXY2	BI: BeamProfile X-Y (closer to Det)		Q1-4		3 MichelAPA 3	11- (delayed Michel signal)
C1, C2	BI: Trigger Counters					
CT, CZ	DI. Higger Counters		DSMTModJ2			
		Q1-4, DSMTModS1 Q1-4, DSMTModS2 Q1-4	1-4, Downstream, Saleve Up/ Dw Module Quadrant 1-4			

examples of possible Trigger Outputs

Pat h	Trigger Requirements ON	Required OFF
1	BeamON+Trig1+Trig2+USTOF+DSTOF	- USMTModS 1Q1
2	BeamON+Trig1+Trig2+USTOF+DSTOF+B PXY1+BPXY2	- USMTModS 1Q1
3	BeamON+Trig1+Trig2+USTOF+DSTOF+B PXY1+BPXY2+C1	-C2 - USMTModS 1Q1

4	BeamON+USMTModJ1Q1+DSMTModJ1Q1+PDAPAS1+PDAP AS2+PDAPAS3	
5	CosmicON+USMTModJ1Q1+DSMTModJ1Q4+PDAPAS1+PDA PAS2+PDAPAS3	-BEAMON
6	CosmicON+MichelAPAJ2	-BEAMON

Detector Performance & Calibration

- Core calibration: convert dQ/dx (ADC/cm) to dE/dx (MeV/cm)
- Electronics calibration
- Space charge effects
- Electron lifetime
- Recombination effects
- Muon/Pion based calibrations

- •S/N characterization
 - S((dE/dx))/N(Ped-rms)
 - all TPC-wire/CE-channels

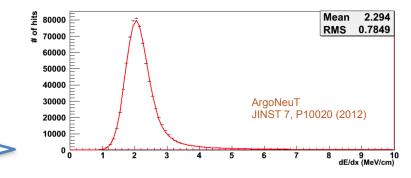


Figure 5. Energy per unit track length deposited by the beam-induced through-going muons in ArgoNeuT, corrected for the contribution of δ -rays. The error bars shown are statistical only. The results from a Landau-Gaussian fit (shown in red) are also reported.

protoDUNE basic Detector performance fundamental to inform DUNE design:

- e-lifetime ⇒ Cryogenic system stability and recirculation/purification efficiency
- $\langle dE/dx \rangle \Rightarrow APA$ (TPC) design geometry
- ⟨dE/dx⟩ ⇒Field Cage (EF uniformity)
- S/N ➡ CE noise level and performance
- <u>SCE mapping</u> ⇒ overall detector capability to provide high quality data for Physics analysis

DUNE-doc-7222-v1

