ATLAS B_c measurements overview

Semen Turchikhin for the ATLAS B-Physics and Light States group

Joint Institute for Nuclear Research

ATLAS B_c workshop

CERN

6 February 2018

$\mathbf{B}_{\mathbf{c}}$ studies in ATLAS: history

- ▶ 2012: Observation of B_c^+ meson with 7 TeV data in $B_c^+ \rightarrow J/\psi \pi^+$ mode
 - ATLAS-CONF-2012-028
- ▶ 2014: First observation of an excited state of B_c^+ consistent with predictions for $B_c^+(2S)$
 - Phys. Rev. Lett. 113 (2014) 212004, arXiv:1407.1032
- ▶ 2015: Study of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ decays
 - Eur. Phys. J. C 76 (2016) 4, arXiv:1507.07099
- ► To be continued...

$B_c^+ \rightarrow J/\psi \pi^+$ observation

- Full 7 TeV dataset used
- ► Muon pairs fitted to a common vertex to form a J/ψ candidate
 - ► χ^2 /n.d.f. $(J/\psi) < 15$
 - ► m(J/ψ) within ±180 MeV around the nominal mass
- ► Combined with another track, fitted to a B⁺_c candidate vertex
 - $\chi^2/\text{n.d.f.}(B_c^+) < 2$
 - $p_{\rm T}(\mu_1,\mu_2) > 4,6 \; {\rm GeV}$
 - ▶ $p_{\mathrm{T}}(\pi^+) > 4 \; \mathrm{GeV}$
 - $p_{\rm T}(B_c^+) > 15 \; {\rm GeV}$
 - transverse impact parameter significance of pion track

$$\frac{d_{xy}^0}{\sigma(d_{xy}^0)} > 5$$

more useful than cutting the decay length (low B_c^+ lifetime)

- Significance of the observed signal exceeds 5 standard deviations
- No cross-section measurement performed yet – to be done soon

Semen Turchikhin

Search for B_c^+ excited states

- \blacktriangleright No excited states of B_c^+ reported previously
- ► The spectrum and properties of B_c^+ family are predicted by non-relativistic potential models, perturbative QCD and lattice calculations
- \blacktriangleright Measurements of the ground and excited states \rightarrow test of these predictions

Overview of $B_c^+(2S)$ search

- ► The analysis uses 7 TeV and 8 TeV pp collisions data
 - ► 4.9 fb⁻¹and 19.2 fb⁻¹, respectively
- ▶ Selection optimized using $S/\sqrt{S+B}$ criterion on Monte Carlo
 - \blacktriangleright Various exclusive backgrounds and inclusive $b\bar{b} \rightarrow J/\psi X$ samples used
 - Optimization performed separately for 7 TeV and 8 TeV data

• J/ψ candidates reconstructed by fitting a muon pair to a common vertex

- Combining a J/ψ candidate with another track $\rightarrow B_c^+(1S)$ candidate
 - \blacktriangleright Di-muon mass is constrained to the J/ψ world average in 3-prong vertex fit
- ► $B_c^+(2S)$ candidates formed from $B_c^+(1S)$ and two tracks from primary vertex with π^\pm masses assigned
 - \blacktriangleright Cascade fit with $B_c^+(1S)$ combined momentum constrained to point to $B_c^+(2S)$ vertex

$B_c^+(1S)$ selection and fit

 $\mathbf{B}_{\mathbf{c}}^{+}(1\mathbf{S})$ selection for 2011 (2012) data

- ▶ $p_{\rm T}(\mu_1, \mu_2) > 4, 6 \, {\rm GeV}$
- ▶ χ^2 /n.d.f. $(J/\psi) < 15$
- m(J/ψ) within ±3σ of the nominal (σ depending on the rapidity range)
- χ^2 /n.d.f. $(B_c^+) < 2.0$ (1.5)
- $p_{\rm T}(B_c^+) > 15 \; {\rm GeV} \; (18 \; {\rm GeV})$
- $\frac{d_{xy}^0}{\sigma(d_{xy}^0)}(\pi^+) > 5$ (4.5)

Extended unbinned fit of the mass distribution

- Signal: Gaussian with per-candidate errors
- Background: exponential

$B_c^+(2S)$ selection and fit

Selection of $\mathbf{B}_{\mathbf{c}}^+(\mathbf{2S}) \rightarrow \mathbf{B}_{\mathbf{c}}^+(\mathbf{1S})\pi^+\pi^$ candidates

- $B_c^+(1S)$ candidates within $\pm 3\sigma$ of the fitted mass
- ▶ $p_{\rm T}(\pi^+,\pi^-) > 400 \text{ MeV}$
- for several candidates in event. the one with the best cascade fit χ^2 is kept

Extended unbinned fit of Q-value distribution

$$Q_{B_c^+\pi\pi} = m(B_c^+\pi^+\pi^-) - m(B_c^+) - 2m(\pi^+)$$

- Signal: Gaussian
- Background: 3rd order polynomial

Wrong charge combination (same-sign π) used for background control

$B_c^+(2S)$ observation

- Significance of the observed signal calculated with toy studies accounting for a *"look elsewhere* effect"
 - 3.7σ in 7 TeV data
 - 4.5σ in 8 TeV data
 - Combined significance is 5.2σ
 - (local significance is 5.4σ)
- Dominant source of systematic of the Q-value is the *fitting procedure*
- ► A new state observed at $Q = 288.3 \pm 3.5 \text{ (stat.)} \pm 4.1 \text{ (syst.)}$ MeV (error-weighted mean of 7 and 8 TeV values)
- Corresponds to a mass $6842 \pm 4 \text{ (stat.)} \pm 5 \text{ (syst.)}$ MeV, that is consistent with the predicted mass of $B_c^+(2S)$

IINR

$B_c^+ \rightarrow J/\psi D_s^{(*)+}$: motivation

- ▶ Decays with charmonia and $D_s^{(*)+}$ represent $\bar{b} \to \bar{c}c\bar{s}$ transition in B_c^+ sector
 - ► Can go through annihilation diagram (suppressed for lighter *B* mesons)

Spectator Colour-suppressed spectator Annihilation

- ► Various model predictions available: *branching ratios, polarization*
 - Test for fragmentation hypothesis (similar decays of B^0 , B^+)
- ► Earlier observed only in LHCb (PRD 87 (2013) 112012)

Analysis in a nutshell

Eur. Phys. J. C 76 (2016) 4

Signal channels: $B_c^+
ightarrow J/\psi D_s^{(*)+}$

- \blacktriangleright Intermediate resonances via $J/\psi \to \mu^+\mu^-$ and $D_s^+ \to \phi(K^+K^-)\pi^+$
- Two distinct vertices of B_c^+ and D_s^+ decays
- J/ψ and D_s^+ masses are fixed to PDG in cascade fit
- ▶ $D_s^{*+} \rightarrow D_s^+ \gamma / \pi^0$, neutral particle escapes detection

Reference channel: $B_c^+
ightarrow J/\psi \pi^+$

- $\blacktriangleright \ B_c^+$ decay forms a secondary vertex; J/ψ mass is fixed to PDG in vertex fit
- \blacktriangleright Large statistics \rightarrow used as a reference for ${\cal B}$ measurement
- Measures ratios are

$$\begin{split} \mathcal{R}_{D_s^+/\pi^+} &= \mathcal{B}(B_c^+ \to J/\psi D_s^+)/\mathcal{B}(B_c^+ \to J/\psi \pi^+),\\ \mathcal{R}_{D_s^{*+}/\pi^+} &= \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi \pi^+),\\ \mathcal{R}_{D_s^{*+}/D_s^+} &= \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi D_s^+) \end{split}$$

Polarization in $B_c^+
ightarrow J/\psi D_s^{*+}$ decay

- ▶ Pseudoscalar B_c^+ decays into two vectors \rightarrow 3 helicity amplitudes A_{00} , A_{++} , A_{--}
- ► Longitudinal A_{00} and transverse $A_{\pm\pm}$ components have different kinematics: $J/\psi D_s^+$ mass shape and J/ψ helicity angle
- \blacktriangleright Are distinguished by fit of these variables \rightarrow measure $\Gamma_{\pm\pm}/\Gamma$

Signal event selection

Dataset

▶ 2011 and 2012 pp data: 4.9 fb⁻¹@ 7 TeV + 20.6 fb⁻¹@ 8 TeV

Triggers

- ▶ Use 5–11 trigger chains depending on data period
- ▶ Search of single-, di- and tri-muon signatures with $J/\psi \rightarrow \mu^+\mu^-$ candidate

Offline selection of candidates

- Aims mostly at combinatorial background suppression
- ► Synchronous between the signal and reference channels if possible
- Selection cuts:
 - Kinematical properties (tracks and D_s^+ candidate p_T)
 - Cascade fit quality (χ^2 /n.d.f.)
 - Secondary and tertiary vertex displacement $(L_{xy}(B_c^+) \text{ and } L_{xy}(D_s^+))$
 - Intermediate resonance mass windows $(J/\psi, D_s^+, \phi)$
 - ► Suppression of $B_s^0 \rightarrow J/\psi\phi$ reflection (exclude $5.34 < m(J/\psi\phi) < 5.40$ GeV region)
 - Angular properties

$J/\psi D_s^+$ candidate fit

- ▶ 2D extended unbinned ML fit of $m(J/\psi D_s^+)$ and $|\cos \theta'(\mu^+)|$ distributions
 - \blacktriangleright Helicity angle $\theta'(\mu^+)$ is the angle between μ^+ and D_s^+ momenta in the J/ψ rest frame

Mass part

• $B_c^+ \rightarrow J/\psi D_s^+$ signal: modified Gaussian function

Gauss^{mod} ~ exp
$$\left[-\frac{x^{1+\frac{1}{1+x/2}}}{2}\right]$$
,
 $x = |M_0 - m(J/\psi D_s^+)|/\sigma$,

width σ fixed to the MC value

- ► $B_c^+ \rightarrow J/\psi D_s^{*+} A_{00}$ and $A_{\pm\pm}$ signals: templates from MC
- ► Background: 2-parametric exponential $\exp\left[a \cdot m(J/\psi D_s^+) + b \cdot m(J/\psi D_s^+)^2\right]$

Angular part

- Singals: MC templates to account for detector effects
 - Analytically:
 - $\bullet \quad B_c^+ \to J/\psi D_s^+: \\ \cos \theta' \sim \sin^2 \theta'$
 - $\bullet \quad B_c^+ \to J/\psi D_s^{*+} A_{00}:$ $\cos \theta' \sim \sin^2 \theta'$
 - $\bullet \quad B_c^+ \to J/\psi D_s^{*+} A_{\pm\pm}: \\ \cos \theta' \sim 1 + \cos^2 \theta'$
- ► Background: templates from m(J/ψD⁺_s) sidebands
 - Left: $m(J/\psi D_s^+) < 5900 \text{ MeV}$
 - Right: $m(J/\psi D_s^+) > 6360 \text{ MeV}$
 - In between: linear interpolation of the two templates

$B_c^+ \rightarrow J/\psi D_s^{(*)+}$ signal (1)

- Signal yields agree with 1D mass fit
- Fit correctness checked with toy MC studies
 - 2D fit is much more sensitive to f_{±±} than 1D
- Statistical significance of the two signals: 4.9σ

Value
6279.9 ± 3.5
36 ± 10
95 ± 27
0.37 ± 0.22

$B_c^+ \to J/\psi D_s^{(*)+}$ signal (2)

- ► ← angular fit projection to the $B_c^+ \rightarrow J/\psi D_s^{*+}$ signal region, 5950 < $m(J/\psi D_s^{+}) < 6250$ MeV
- $\checkmark J/\psi \rightarrow \mu^+\mu^-$ and $D_s^+ \rightarrow \phi(K^+K^-)\pi^+$ signals

corresponding to the selected $B_c^+ \to J/\psi D_s^+$ candidates

The same selection, but the cascade fit w/o fixing the intermediate resonance masses

IINR

Reference channel $B_c^+ \to J/\psi \pi^+$

$$B_c^+ \to J/\psi \pi^+$$
 fit

1D extended unbinned ML fit

- Background: exponential
- Signal: modified Gaussian

Parameter	Value
$m_{B_c^+ \rightarrow J/\psi \pi^+}$ [MeV]	6279.9 ± 3.9
$\sigma_{B_c^+ \to J/\psi \pi^+}$ [MeV]	33.9 ± 4.2
$N_{B_c^+ \to J/\psi \pi^+}$	1140 ± 120

$$\begin{split} \mathcal{R}_{D_{s}^{(*)+}/\pi^{+}} &\equiv \frac{\mathcal{B}_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}}{\mathcal{B}_{B_{c}^{+} \to J/\psi \pi^{+}}} = \frac{1}{\mathcal{B}_{D_{s}^{+} \to \phi(K^{+}K^{-})\pi^{+}}} \times \frac{N_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}}{N_{B_{c}^{+} \to J/\psi \pi^{+}}} \times \frac{\mathcal{A}_{B_{c}^{+} \to J/\psi \pi^{+}}}{\mathcal{A}_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}} \\ \mathcal{R}_{D_{s}^{*+}/D_{s}^{+}} &\equiv \frac{\mathcal{B}_{B_{c}^{+} \to J/\psi D_{s}^{*}}}{\mathcal{B}_{B_{c}^{+} \to J/\psi D_{s}^{*}}} = \frac{N_{B_{c}^{+} \to J/\psi D_{s}^{*}}}{N_{B_{c}^{+} \to J/\psi D_{s}^{*}}} \times \frac{\mathcal{A}_{B_{c}^{+} \to J/\psi D_{s}^{*}}}{\mathcal{A}_{B_{c}^{+} \to J/\psi D_{s}^{*}}} \\ \Gamma_{\pm\pm}/\Gamma &= f_{\pm\pm} \times \frac{\mathcal{A}_{B_{c}^{+} \to J/\psi D_{s}^{*}}}{\mathcal{A}_{B_{c}^{+} \to J/\psi D_{s}^{*}}} \\ \end{split}$$

Systematics

- ► Systematics dominated by uncertainties of the signal fits, both $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ and $B_c^+ \rightarrow J/\psi \pi^+$ modes
 - \blacktriangleright Ratios ${\cal R}$ mostly affected by signal and background mass shape variations
 - $\blacktriangleright\ \Gamma_{\pm\pm}/\Gamma$ uncertainty dominated by background angular modelling

Source	Uncertainty [%]			
	$R_{D_s^+/\pi^+}$	$R_{D_s^{*+}/\pi^+}$	$R_{D_s^{*+}/D_s^+}$	$\Gamma_{\pm\pm}/\Gamma$
Simulated $p_{\rm T}(B_c^+)$ spectrum	0.4	0.9	0.5	0.4
Simulated $ \eta(B_c^+) $ spectrum	1.9	2.4	0.6	0.2
Tracking efficiency	0.5	0.5	< 0.1	< 0.1
B_c^+ lifetime	1.2	1.3	< 0.1	< 0.1
D_s^+ lifetime	0.3	0.3	< 0.1	< 0.1
$B_c^+ \to J/\psi D_s^{(*)+}$ signal extraction	4.4	10.5	10.7	17.4
$B_c^+ \to J/\psi \pi^+$ signal extraction	8.5	8.5	_	_
D_s^{*+} branching fractions	< 0.1	< 0.1	< 0.1	1.1
MC sample sizes	2.3	2.4	2.7	2.2
Total	10.3	14.2	11.0	17.6
$\mathcal{B}_{D_s^+ o \phi(K^+K^-)\pi^+}$	5.9	5.9	_	_
ATLAS B _C workshop, 6 Feb 2018	Semen Turchikhin		JINR	

Results

$$\mathcal{R}_{D_s^+/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}} = 3.8 \pm 1.1 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (BF)}$$

$$\mathcal{R}_{D_s^{*+}/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}} = 10.4 \pm 3.1 \text{ (stat.)} \pm 1.5 \text{ (syst.)} \pm 0.6 \text{ (BF)}$$

$$\mathcal{R}_{D_s^{*+}/D_s^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}} = 2.8^{+1.2}_{-0.8} \text{ (stat.)} \pm 0.3 \text{ (syst.)}$$

•
$$\Gamma_{\pm\pm}/\Gamma = 0.38 \pm 0.23 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$$

JINR

Main ATLAS B_c highlights:

- First and so far the only observation of an excited state of B_c
 - ► Non-observation by LHCb and lack of CMS results motivates further study
- ▶ Measurement of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decays properties
 - ► We were not the first, but rather competitive
 - Good performance of ATLAS with such complicated decay topologies motivates a number of other related studies

Further ATLAS B_c results to come soon, stay in tune!