ATLAS Bc mini-workshop 6 February 2018

LHCb experimental overview of B⁺_c

Daria Savrina on behalf LHCb collaboration

Institute of Theoretical and Experimental Physics (Moscow) Skobeltsyn Institute for Nuclear Research (Moscow)

Outline

Introduction

Searches for the new B_c^+ -meson decays $B_c^+ \rightarrow J/\psi D^{(*)}K^{(*)}$ $B_c^+ \rightarrow D^{0(*)}h^+$ $B_c^+ \rightarrow D_{(s)}^{+(*)}D^{(*)}$

Test of the lepton universality with the semileptonic ${\sf B}_{\rm c}^{\, *}$ decays

Searches for the excited B_c⁺ states

B_c⁺-mesons at LHCb

 B_c^+ -meson observed by the CDF collaboration in 1998 [Phys. Rev. Lett. 81, 2432] Not accessible by the B-factories → least studied of all B-meson Only 16 decay modes established by now

[JINST 3 (2008) S08005]

Production rates in the LHCb acceptance $\sigma(B_c^+) \sim 20 \text{ nb} @ 7 \text{ TeV}$ $\sigma(B_c^+) \sim 40 \text{ nb} @ 14 \text{ TeV}$ [Phys.Atom.Nucl.60:1729-1740,1997]

Fully instrumented rapidity range $2 < \eta < 5$

VELO: Decay time resolution ~45 fs for B-mesons ~100 fs for D-mesons

Relative track momentum resolution:

0.5% at low momentum 1.0% at 200 GeV/c **Particle identification:**

Kaon ID ~95 % for ~ 5 % $\pi \rightarrow K$ mis-id probability Muon ID ~97 % for 1-3 % $\pi \rightarrow \mu$ mis-id probability **Trigger:**

~90% trigger efficiency for dimuon channels ~30 % for multi-body hadronic final states

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺", Daria Savrina

Searches for new B_c⁺ decays

 $\rightarrow J/\Psi D^{(*)}K^{(*)}$

[Phys. Rev. D 95, 032005 (2017)]

Motivation

Studying the DK system for the D_{SJ} contribution

Opens the door to the possible exotic searches in J/ψD and close to DD threshold

Modes reconstructed

$$\begin{split} B_c^{\ +} &\to J/\psi(\to \mu^+\mu^-)D^0(\to K^-\pi^+\pi^-\pi^+)K^+ \\ B_c^{\ +} &\to J/\psi(\to \mu^+\mu^-)D^0(\to K^-\pi^+)K^+ \\ \text{Partially reconstructed } B_c^{\ +} &\to J/\psi(\to \mu^+\mu^-)D^{*0}(\to D^0 + \gamma/\pi^0)K^+ \end{split}$$

 $\begin{array}{l} \mathsf{B}_{c}^{+} \to \mathsf{J}/\psi(\to \mu^{*}\mu^{-})\mathsf{D}^{*}(\to \mathsf{K}^{-}\pi^{+}\pi^{+})\mathsf{K}^{*0}(\to \mathsf{K}^{+}\pi^{-})\\ \text{Partially reconstructed } \mathsf{B}_{c}^{+} \to \mathsf{J}/\psi(\to \mu^{*}\mu^{-})\mathsf{D}^{**}(\to \mathsf{D}^{0}\pi^{+})\mathsf{K}^{*0}(\to \mathsf{K}^{+}\pi^{-})\end{array}$

$\rightarrow J/\psi D^{(*)}K^{(*)}$

J/ψD⁰K⁺

6600

6.3σ

Data: 3 fb⁻¹, full Run 1 sample

Event selection: common loose preselection+BDT trained separately for each decay

Partially reconstructed $B_{c}^{+} \rightarrow J/\psi D^{0*}K^{+}$, 10.3 σ Candidates / (7 MeV/ c^2) Data BDT based on LHCb 25 - Total fit $\cdots B_{c}^{+} \rightarrow J/\psi D^{0} K^{+}$ B_,⁺-meson transverse momentum $- B_c^+ \rightarrow J/\psi D^{*0} K^+$ 20 χ^2 vertex fit for all unstable particles Background Event geometry 15 10 Similar selection for the normalization $B_c^+ \rightarrow J/\psi \pi^+$ channel 5 0 Ľ 6000 6200 6400 $M(J/\psi D^0 K^+) [MeV/c^2]$

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

 $B_c^+ \rightarrow J/\psi D^{(*)} K^{(*)}$

2 first observations and 2 first evidences:

$$\begin{aligned} \frac{\mathcal{B}(B_c^+ \to J/\psi \, D^0 K^+)}{\mathcal{B}(B_c^+ \to J/\psi \, \pi^+)} &= 0.432 \pm 0.136 \pm 0.028, \\ \frac{\mathcal{B}(B_c^+ \to J/\psi \, D^{*0} K^+)}{\mathcal{B}(B_c^+ \to J/\psi \, D^0 K^+)} &= 5.1 \pm 1.8 \pm 0.4, \\ \frac{\mathcal{B}(B_c^+ \to J/\psi \, D^{*+} K^{*0})}{\mathcal{B}(B_c^+ \to J/\psi \, D^0 K^+)} &= 2.10 \pm 1.08 \pm 0.34, \\ \frac{\mathcal{B}(B_c^+ \to J/\psi \, D^0 K^+)}{\mathcal{B}(B_c^+ \to J/\psi \, D^0 K^+)} &= 0.63 \pm 0.39 \pm 0.08, \end{aligned}$$

Most precise single mass measurement:

 $M(B_{c}^{+}) = 6274.28 \pm 1.40 \pm 0.32 \text{ MeV/c}^{2}$ Consistent with previous LHCb measurements and the world average

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B_c⁺", Daria Savrina

$B_c^+ \rightarrow D^{0(*)}h^+$

Data: 3 fb⁻¹, full Run 1 sample

Event selection: loose preselection + 2 BDT trained to remove D^o and non-D^o background

For fully reconstructed decays:

 B_c^+ masses fixed to the PDG values Resolutions are estimated from the normalization channel $B^+ \rightarrow \overline{D}h^+$

First observation of the $B_c^{\pm} \rightarrow D^0 K^{\pm}$ decay Branching fraction measured

$$R_{D^{(*)0}h} = \frac{f_c}{f_u} \times \mathcal{B}(B_c^+ \to D^{(*)0}h^+) = (9.3 + 2.8 \pm 0.6) \times 10^{-7}$$

At the high end of theoretical predictions Absence of $B_c^{\ \pm} \rightarrow D^0 \pi^{\pm}$ means that the tree-level contribution is not dominating one

For the other modes the upper limits are set up @95% CL

$$R_{D^{0}\pi} < 3.9 \times 10^{-7}$$
$$R_{D^{*0}\pi} < 1.1 \times 10^{-6}$$
$$R_{D^{*0}K} < 1.1 \times 10^{-6}.$$

Decays into two charmed mesons

Motivation

[arXiv:1712.04702, submitted to Nucl.Phys.B]

Additional possibilities for the Unitarity Triangle angle $\boldsymbol{\gamma}$ measurements

Lower production cross-section than for B⁺-mesons Lower branching fractions than for B⁺ \rightarrow DK

	Prediction for the branching fraction $[10^{-6}]$			
Channel				
$B_c^+ \to D_s^+ \overline{D}{}^0$	2.3 ± 0.5	4.8	1.7	2.1
$B_c^+ \to D_s^+ D^0$	3.0 ± 0.5	6.6	2.5	7.4
$B_c^+ \to D^+ \overline{D}{}^0$	32 ± 7	53	32	33
$B_c^+ \to D^+ D^0$	0.10 ± 0.02	0.32	0.11	0.32

[Phys. Rev. D86 (2012) 074019], [arXiv:hep-ph/0211021], [Phys. Lett. B555 (2003) 189], [Phys. Rev. D73 (2006) 054024]

Expected large amplitude ratio and CP-asymmetry

Can use decays with excited D-mesons in the final state also

Alternative method: study of the angular distributions in $B_c^+ \rightarrow D_{(s)}^{*+}D^*$ [Phys. Rev. D65 (2002) 034016]

6.02.2018, ATLAS Bc mini-workshop , "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

Decays into two charmed mesons

And also for the modes involving excited D-mesons Upper limits are far above the theoretical predictions

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

Lepton universality with semileptonic B⁺ decays

Lepton universality

Lepton universality: SM predicts same behavior for all charged leptons Same amplitudes besides the effects of different masses

simple theoretical descriptions through tree-level diagrams in SM new channels should give additional information

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺", Daria Savrina

Semileptonic B⁺_c decays

Possibility provided by the B⁺ decays:

 $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_{\mu})} \quad \begin{array}{l} \text{SM expectation $\sim 0.25-0.28$ depending on form-fa} \\ \text{[Phys. Lett. B452 (1999) 129] [arXiv:hep-ph/0211021]} \end{array}$ [Phys. Rev. D73 (2006) 054024] [Phys. Rev. D74 (2006) 074008]

[arXiv:1711.05623, submitted to PRL]

Data: 3 fb⁻¹, full Run 1 sample

Event selection: cut-based + isolation BDT, same for both semimuonic and semitauonic channels

Disentangle semimuonic and semitauonic contributions via different decay kinematics based on three variables:

Missing mass: $m_{miss}^2 = (\mathbf{p}_{Bc} - \mathbf{p}_{J/\psi} - \mathbf{p}_{\mu})^2$ Energy of the bachelor muon: E_{μ}^* Four-momentum transfer: $q^2 = (\mathbf{p}_{Bc} - \mathbf{p}_{J/\psi})^2$

B_c⁺-meson decay time – to remove background from light B-mesons decays

B-meson direction of flight determined as the direction from primary to secondary vertex and $(p_B)_z = \frac{m_B}{m_{\text{reco}}} (p_{\text{reco}})_z$

6.02.2018, ATLAS Bc mini-workshop , "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

Results

[arXiv:1711.05623, submitted to PRL]

Data: 3 fb⁻¹, full Run 1 sample

Event selection: cut-based, same for both semimuonic and semitauonic channels

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

15/22

B_c⁺ spectroscopy

Excited states

B_c⁺ has a large spectrum, the excited states still remain to be observed

Many theoretical predictions for spectroscopy and properties.

[arxiv:9703341], [PRD 71, 074012].

First $B_c(2S)^+$ observation was recently claimed by ATLAS

 $B_c^{\, *} \pi^{\, *} \pi^{\, -}$ final state Measured mass 6842 ± 4 ± 5 MeV/c²

[Phys. Rev. Lett. 113, 212004 (2014)]

The most probable interpretation is either $B_c(2^3S_1)$ or sum of $B_c(2^3S_1)$ and $B_c(2^1S_0)$ 6.02.2018, ATLAS Bc mini-workshop , "LHCb experimental overview of B_c^{++} ", Daria Savrina 17/22

Search for excited B⁺_c states

[arXiv:1712.04094, accepted by JHEP]

Data: 2 fb⁻¹ collected in pp collisions at the energy of $\sqrt{s} = 8$ TeV Search for B_c(2¹S₀) and B_c(2³S₁) states

 $B_c(2^1S_0) \rightarrow B_c^+ (\rightarrow J/\psi\pi^+) \pi^+\pi^-$

 $B_{c}(2^{3}S_{_{1}}) \rightarrow B_{c}^{\ *}(\rightarrow B_{c}^{\ +} \ (\rightarrow J/\psi\pi^{_{1}})\gamma) \ \pi^{_{1}}\pi^{_{-}} \text{ with missing photon}$

In the transverse momentum range of $p_{\tau} \in [0, 20]$ GeV/c and rapidity $y \in [2.0, 4.5]$

Use BDT for the $B_c^+ \rightarrow J/\psi \pi^+$ selection

BDT based on the vertex χ^2 , impact parameters χ^2 with respect to primary vertex and transverse momenta of the daughter particles

6.02.2018, ATLAS Bc mini-workshop , "LHCb experimental overview of B_c⁺", Daria Savrina

Search for excited B_c⁺ states

[arXiv:1712.04094, accepted by JHEP]

Apply MLP for further selection of $B_c(2S)$ to improve the sensitivity

MLP based on the angular variables between the B_c^+ and B_c^{*+} daughter particles

Total selection efficiencies for the $B_c(2^1S_0)$ and $B_c(2^3S_1)$ in the four MLP bins

MLP category	(0.02, 0.2)	[0.2, 0.4) Efficienci	[0.4, 0.6) ies in %	[0.6, 1.0]
$\frac{B_c(2S)^+}{B_c^*(2S)^+}$	0.148 ± 0.006 0.118 ± 0.003	0.140 ± 0.006 0.140 ± 0.004	0.130 ± 0.006 0.144 ± 0.004	$\begin{array}{c} 0.256 \pm 0.008 \\ 0.288 \pm 0.005 \end{array}$

No significant signal in the $B_c^+\pi^+\pi^-$ invariant mass is seen

- + data
- same-sign background
- considered signal region
- Upper limits set up for the ratio:

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)+}(2S)}}{\sigma_{B_c^+}} \cdot \mathcal{B}_{B_c^{(*)+}(2S) \to B_c^{(*)+}\pi^+\pi^-}$$

With the help of CL_s method

6.02.2018, ATLAS Bc mini-workshop , "LHCb experimental overview of B_c⁺", Daria Savrina

Search for excited B_c⁺ states

[arXiv:1712.04094, accepted by JHEP] Mass resolution fixed from simulation, cross-checked with data for $B_{2}^{+} \rightarrow J/\psi \pi^{+}\pi^{+}\pi^{-}$ 4 different values of reconstructed mass difference (ΔM) between B₂(2¹S₀) and B₂(2³S₁) Scan over the signal mass range B_c(2¹S₀): [6830, 6890] MeV/c² Consistent with backgroundonly hypothesis within 3o B_c(2³S₁): [6795, 6890] MeV/c² Reconstructed $M(B_c(2^3S_1)^+)$ [MeV/ c^2] Reconstructed $M(B_c(2^3S_1)^+)$ [MeV/ c^2] 6840 6850 6860 6870 6880 6890 6810
 6820
 6830
 6840
 6850
 6860
 6830 6870 upper limit on R X 02 02 $--- B_c(2^1S_0)^+$ CL 90% LHCb 2 fb⁻ upper limit on LHCb 2 fb^{-1} ---- $B_c(2^1S_0)^+$ CL 95% $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $B_c(2^1S_0)^+ + B_c(2^3S_1)^+ CL 90\%$ 0.15 0.15 $--- B_c(2^3S_1)^+ CL 90\%$ $B_c(2^1S_0)^+ + B_c(2^3S_1)^+ CL 95\%$ $B_c(2^3S_1)^+$ CL 95% 0.10.05 0.05 $\Delta M = 0 MeV/c^2$ $\Delta M = 15^{\circ} MeV/c^2$ 0 6830 6840 6850 6860 6870 6880 6890 6830 6840 6850 6860 6870 6880 6890 $M(B_c(2^1S_0)^+)$ [MeV/ c^2] $M(B_c(2^1S_0)^+)$ [MeV/ c^2] Reconstructed $M(B_c(2^3S_1)^+)$ [MeV/ c^2] Reconstructed $M(B_c(2^3S_1)^+)$ [MeV/ c^2] 6800 6810 6820 6830 6840 6860 6870 6790 6800 6810 6820 6830 6840 6860 6850 upper limit on *R* upper limit on R 0.20.2• $B_c(2^1S_0)^+$ CL 90% $--- B_c(2^1S_0)^+$ CL 90% LHCb 2 fb^{-1} LHCb 2 fb⁻¹ ---- $B_c(2^1S_0)^+$ CL 95% ---- $B_c(2^1S_0)^+$ CL 95% $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 0.15 0.15 $--- B_c(2^3S_1)^+$ CL 90% $--- B_c(2^3S_1)^+$ CL 90% $B_c(2^3S_1)^+$ CL 95% $B_c(2^3S_1)^+$ CL 95% 0.1 0.05 0.05 MeV/c^2 0

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

Search for excited B⁺_c states

[arXiv:1712.04094, accepted by JHEP]

Resulting upper limits are contained in the range [0.04; 0.09] Consistent with most theoretical predictions

For Br(B_c(2S)⁺ \rightarrow B_c⁺ $\pi^{+}\pi^{-}$) = 49% Br(B_c^{*}(2S) \rightarrow (B_c^{*}(\rightarrow B_c⁺ γ) $\pi^{+}\pi^{-}$) = 39%

[arXiv:hep-ph/0211432]

	$R_{Bc(2S)^+}$	$R_{_{Bc^*(2S)^+}}$
BcVegPy hep-ph/9602347	0.02	0.04
Fragmentation approach arXiv:hep-ph/0211432	0.02	0.04
Complete order-α _s ⁴ Chin. Phys. Lett. 27 061302	0.04	0.09

For Br(B_c(2S)⁺ \rightarrow B_c⁺π⁺π⁻) = 59% Br(B_c^{*}(2S) \rightarrow (B_c^{*}(\rightarrow B_c⁺γ)π⁺π⁻) = 53% [Phys. Rev. D70 (2004) 054017]

	$R_{Bc(2S)^+}$	$R_{Bc^*(2S)^*}$
BcVegPy hep-ph/9602347	0.02	0.05
Complete order-α _s ⁴ Chin. Phys. Lett. 27 061302	0.05	0.12

6.02.2018, ATLAS Bc mini-workshop, "LHCb experimental overview of B⁺⁺⁺, Daria Savrina

Conclusions

A number of new decays of B_c⁺-mesons are observed and studied

Most precise B_c⁺ mass measurement in a single decay Observation of penguin and/or weak annihilation decays of the B_c⁺-mesons

Open up exciting possibilities for the future studies

A test of the lepton universality performed with the help of the semileptonic B⁺_c-mesons decays

Within 2 standard deviations agreement with the SM Higher than the SM prediction as well as R(D*)

Searches for the excited B⁺_c states performed

No signals observed for the $B_c(2^1S_0)$ and $B_c(2^3S_1)$ states

Work in progress... Looking forward for the new results!

Previous LHCb B_c⁺ studies

Properties:

- Measurement of the lifetime of the B_c^+ meson using the $B_c^+ \rightarrow J/\psi \pi^+$ decay mode Phys. Lett. B 742 (2015) 29-37
- Measurement of the B_c^+ meson lifetime using $B_c^+ \to J/\psi \mu^+ v_\mu^- X$ decays Eur. Phys. J. C74 (2014) 2839
- Measurements of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi \pi^+$ decay Phys. Rev. Lett. 109, 232001 (2012)

New decays:

- Study of B_c^+ decays to the K⁺K⁻ π^+ final state and evidence for the decay $B_c^+ \rightarrow \chi_{c0} \pi^+$ Phys. Rev. D 94, 091102 (2016)
- Search for B_{c}^{+} decays to the $p\bar{p}\pi^{+}$ final state, Physics Letter B759, 313 (2016)
- First observation of a baryonic B_c^+ decay, Phys. Rev. Lett. 113, 152003 (2014)
- Evidence for the decay $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$, JHEP 1405 (2014) 148
- Observation of the decay $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+$, JHEP 1311 (2013) 094
- Observation of the decay $B_c^+ \rightarrow B_s^0 \pi^+$, Phys. Rev. Lett. 111, 181801 (2013)

Previous LHCb B_c⁺ studies

New decays

- First observation of the decay $B_c^+ \rightarrow J/\psi K^+$, JHEP09(2013)075
- Observation of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}^*$ decays, Phys.Rev.D87, 11 (2013) 112012
- Observation of the decay $B_c^+ \rightarrow \psi(2S)\pi^+$, Phys. Rev. D 87, 071103(R) (2013)
- First observation of decay $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$, Phys. Rev. Lett. 108, 251802 (2012)

Branching fractions

- Measurement of the ratio of branching fractions $B(B_c^+ \rightarrow J/\psi K^+)/B(B_c^+ \rightarrow J/\psi \pi^+)$ JHEP 1609 (2016) 153
- Measurement of the branching fraction ratio $B(B_c^+ \rightarrow \psi(2S)\pi^+)/B(B_c^+ \rightarrow J/\psi\pi^+)$ Phys. Rev. D 92, 072007 (2015)
- Measurement of the ratio of B_c^+ branching fractions to $J/\psi\pi^+$ and $J/\psi\mu^+\nu_{\mu}$ final states Phys. Rev. D 90, 032009 (2014)

Full list of the LHCb measurements:

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html

Excited B⁺_c mesons simulation and selection

Pythia 6 + BcVegPy

 $M(B_{c}(2S)^{+}) = 6858 \text{ MeV/c}^{2}$ $M(B_{c}^{*}(2S)^{+}) = 6890 \text{ MeV/c}^{2}$ $M(B_{c}^{*+}) = 6342 \text{ MeV/c}^{2}$ $\Delta M = 35 \text{ MeV/c}^{2}$ Unpolarized B_{c}^{*}(2S)^{+}

B_{c}^{+} preselection

```
Muon p_T > 0.55 GeV/c

M(J/\psi) in [3.04; 3.14] GeV/c<sup>2</sup>

Pion p_T > 1.00 GeV/c

Pion impact parameter \chi^2

with respect to primary vertex (\chi^2_{IP}) > 9
```

```
B_{c}^{+} decay time > 0.2 ps
```

```
\chi^{2}_{IP}(B^{+}_{c}) < 25
```

MLP variables

```
Angles between the B<sup>+</sup><sub>c</sub> and \pi^+, B<sup>+</sup><sub>c</sub> and \pi^-, \pi^+ and \pi^- candidate momenta projected in the plane transverse to the beam axis
```

```
Angles between the B^{(*)}_{c}(2S)^{+} momentum and the B^{+}_{c}, \pi^{+}, and \pi^{-} momenta in
```

```
the B^{(*)}_{c} (2S)<sup>+</sup> centre-of-mass frame
```

Minimum cosine value of the angles between the momentum of the B_c^+ meson or of one of the pions from $B_c^{(*)}(2S)^+$ and the momentum of the muons or pion from the B_c^+ meson

The vertex-fit χ^2 of the B^(*)_c(2S)⁺ meson.

Isolation BDT for semileptonic decays

Input variables:

Transverse momentum of the track Impact parameter χ^2 of the track with respect to the primary vertex Impact parameter χ^2 of the track with respect to the B+c vertex The cosine of the angle track makes with J/ $\psi\mu$ momentum Flight distance χ^2 of the B⁺_c before and after the addition of the track

Search for excited B_c⁺ states

12/22

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2017

