

ガンマ線起源空気シャワーのエネルギー決定

川田 和正（東大宇宙線研）

1．HAWC実験
2．Tibet AS＋MD実験
3．まとめ

HAWC㬰酫

Mt．Sierra Negra，Mexico標高4100m，北緯19ㅇ 300 tanks 20，000m²

HAWC実験：北天サーベイ（2017）

Abeysekara＋（HAWC Collab．），ApJ，843， 40 （2017）

広がったガンマ線源を多数発見

HAWC実験：Crab Nebula（2017）

Abeysekara＋（HAWC Collab），ApJ，843， 39 （2017）北天の標準天体

有効観測日数：507日間（2014年11月－2016年6月）

\checkmark エネルギー範囲：1 TeV－30 TeV
\checkmark 小さな統計誤差，大きな系統誤差

Gamma／Hadron 選別後の生存率

LP（log parabola）fit ：
$\phi(E)=\phi_{0}\left(E / E_{0}\right)^{-\alpha-\beta \cdot \ln \left(E / E_{0}\right)}$

HAWC実験：イベント再構成

Abeysekara＋（HAWC Collab），ApJ，843， 39 （2017）

（c）Recorded Time

Crabからのガンマ線候補事象 エネルギー不明＞10TeV？

（d）Shower Curvature／Sampling
\checkmark 検出器間の相対的時間差
\checkmark 水タンク：空気シャワー中のガンマ線にも高感度
\checkmark 高い有感面積 \rightarrow 良い角度分解能

HAWC実験：イベント再構成

Abeysekara＋（HAWC Collab），ApJ，843， 39 （2017）
エネルギー決定

（a）Recorded Effective Charge

Crabからのガンマ線候補事象 エネルギー不明＞10TeV？
（b）Lateral Distribution Function

ラテラル分布 ：SFCF ：Super Fast Core Fit

$$
S_{i}=S\left(A, \vec{x}, \vec{x}_{i}\right)=A\left(\frac{1}{2 \pi \sigma^{2}} e^{-\left|\vec{x}_{i}-\vec{x}\right|^{2} / 2 \sigma^{2}}+\frac{N}{\left(0.5+\left|\vec{x}_{i}-\vec{x}\right| / R_{m}\right)^{3}}\right)
$$

\checkmark 簡略化したNKG関数？

HAWC実験：エネルギー分解能

Abeysekara＋（HAWC Collab），ApJ，843， 39 （2017）

\mathcal{B}	$f_{\text {hit }}$	ψ_{68}
1	$6.7-10.5 \%$	1.03
2	$10.5-16.2 \%$	0.69
3	$16.2-24.7 \%$	0.50
4	$24.7-35.6 \%$	0.39
5	$35.6-48.5 \%$	0.30
6	$48.5-61.8 \%$	0.28
7	$61.8-74.0 \%$	0.22
8	$74.0-84.0 \%$	0.20
9	$84.0-100.0 \%$	0.17

MCシミュレーションによる各ビン $\left(f_{\text {hit }}\right)$ のエネルギー分布

$$
f_{\text {hit }}=\frac{\# \text { of PMT hits }}{\text { total \# of available PMTs }}
$$

\checkmark エネルギー分解能～1000\％
\checkmark ラテラル分布は使わない？使えない？

HAWC実験：エネルギー決定の不定性

\checkmark 空気シャワーの発生高度のばらつき \checkmark コア位置の決定精度 40－60m（68\％C．L．） \checkmark アレイ外側に落ちたイベントの染み込み \checkmark その他？

Reconstructed Core

コア位置決定精度

HAWC実験：系統誤差（2017）

Abeysekara＋（HAWC Collab），ApJ，843， 39 （2017）

Systematic	Overall Flux	Spectral Index	$\log _{10}(\mathrm{E})$
Charge Resolution／Relative Quantum	$\pm 20 \%$	± 0.05	$< \pm 0.1$
Efficiency			
PMT Absolute Quantum Efficiency	$\pm 15 \%$	± 0.05	$< \pm 0.1$
Time Dependence，PMT Layout and Crab	$\pm 10 \%$	± 0.1	$< \pm 0.1$
Optimization	$\pm 20 \%$	± 0.1	
Angular Resolution	$\pm 40 \%$	± 0.15	$< \pm 0.15$
Late Light Simulation	$\pm 50 \%$	± 0.2	<0.2

\checkmark シミュレーションでは信号の到来時間分布はおおよそ10ns以内に収まる が，50PEs以上のPE分布等は何かモデルが間違っていることを示唆
\checkmark データの到来時間分布はシミュレーションの期待値より広がっている。
\rightarrow チェレンコフ光の反射とか？（タンク内壁は黒プラスチック）
\rightarrow ToT（Time over Threshold）による電荷測定による系統誤差？

チベット空気シャワー観測装置

ロチベット $\left(90.522^{\circ} \mathrm{E}, 30.102^{\circ} \mathrm{N}\right.$ ）標高4300 m
現行装置のスペック
ロ シンチレーション検出器数 $0.5 \mathrm{~m}^{2} \times 789$

- 空気シャワー有効面積 $\quad 37,000 \mathrm{~m}^{2}$
- 観測エネルギー
- 角度分解能
- 視野
$>\mathrm{TeV}$
～0．5ㅇ․10TeV
～0．2＠100TeV
～2 sr
\rightarrow 空気シャワー中の二次粒子（主に ${ }^{+/ /}, r$ ）を観測も一次宇宙線エネルギー，方向を測定
（7）

チベット水チェレンコフミューオン観測装置（Tibet MD）
\checkmark 地下 2.5 m （物質厚 $\sim 515 \mathrm{~g} / \mathrm{cm} 2 \sim 19 X_{0}$ ）
$\checkmark 7.2 \mathrm{~m} \times 7.2 \mathrm{~m} \times$ 水深 1.5 m 水槽 80 台
\checkmark 20＂ ФPMT（HAMAMATSU R3600）
\checkmark 水槽材質：コンクリート＋白色反射材

$\leftarrow 7200$
\rightarrow 空気シャワー中のミューオン数 を測定し，ガンマ線／核子選別

100TeV以上ではほぼバックグラウンドフリー でガンマ線起源の空気シャワーを観測可能

$4,200 \mathrm{~m}^{2}$地下施設

バックグランドフリーガンマ線

カット後，＞99．9\％の宇宙線を除去＠100TeV
\rightarrow バックグランドフリー，電磁成分優勢のシャワー

100 TeV ガンマ線は存在するか？

Crab Nebula
$>80 \mathrm{TeV}$ 全天で未観測領域
HEGRA \rightarrow Power－Law HESS \rightarrow Cut－off
π^{0} decay成分による構造

エネルギー分解能の向上 そ
ガンマ線起源の空気シャワーの横方向分布を用いてNKG関数 によりエネルギー推定

検出器で見た空気シャワー

二次粒子数分布
宇宙線のエネルギー

粒子到来時間分布

宇宙線の方向

10TeV以下のラテラルフィットできないイベント
\rightarrow 総粒子数 $\Sigma \rho \propto$ 宇宙線エネルギー

ガンマ線空気シャワーのイベントマップ（MC）

再構成コア位置 $\quad\left(X_{\text {core }}, Y_{\text {core }}\right)=\left(\frac{\sum_{i} \rho_{i}^{2} x_{i}}{\sum_{i} \rho_{i}^{2}}, \frac{\sum_{i} \rho_{i}^{2} y_{i}}{\sum_{i} \rho_{i}^{2}}\right)$
決定精度：10m＠10TeV（68\％C．L．）
4．7m＠100TeV（68\％C．L．）
Kawata＋Exp Astron，44， 1 （2017）

ガンマ線空気シャワー横方向分布（MC）
（b）

（d）

ガンマ線起源空気シャワーは電磁成分が優勢 \rightarrow オリジナルのNKG関数でフィット

$$
\rho_{\mathrm{NKG}}(r)=\frac{N_{\mathrm{e}}}{r_{\mathrm{m}}^{2}} \frac{\Gamma(4.5-s)}{2 \pi \Gamma(s) \Gamma(4.5-2 s)}\left(\frac{r}{r_{\mathrm{m}}}\right)^{s-2}\left(1+\frac{r}{r_{\mathrm{m}}}\right)^{s-4.5}
$$

N_{e} ：空気シャワーサイズ
S50：コアから50mでの粒子密度
（極高エネルギ一宇宙線実験で使われる AGASA：S600，TA：S800）

真のエネルギーとの相関（MC）

（b）

赤曲線：エネルギー変換関数（多項式フィツト） \rightarrow 完全にリニアではない（空気シャワーの発達による）
（a） S 50 ：NKG関数で得られた
コアから50m地点の粒子密度
（b）N_{e} ：NKG関数で得られたシャワーサイズ
（c）$\Sigma \rho:$ 検出器で得られた単純な総粒子数

各決定因子によるエネルギー分解能（MC）

$\checkmark \ln \left(E_{\mathrm{REC}} / E_{\mathrm{GEN}}\right)$ をガウス分布
でフィット \rightarrow 分散 $: \sigma_{\operatorname{In} \Delta \mathrm{E}}$

各決定因子によるエネルギー分解能（MC）

$\checkmark \ln \left(E_{\mathrm{REC}} / E_{\mathrm{GEN}}\right)$ をガウス分布 でフィット \rightarrow 分散：$\sigma_{\mathrm{In} \Delta \mathrm{E}}$
\checkmark S50が10－1000TeVで最も良いエネルギー分解能
\checkmark 10TeV以下は上ןが良い
$\checkmark 1000 T e V 以 上 は$ 同程度に近づく
$\checkmark \Sigma \rho$ の200TeV以上での分解能低下：空気シャワーコアが検出器を直撃したイベントの影響。 700TeVで回復するのは検出器が サチり影響が薄まるため。

Srパラメータの最適化（MC）

S10からS100を調べた結果
\checkmark どのエネルギー領域でも S40－S60が最適
\checkmark ガンマ線の天頂角にも若干 の依存性あり

100TeVガンマ線は存在するか？

エネルギー決定精度に よるもれだし新手法 S50：～2 events従来法 $\Sigma \rho$ ：～4 events

信号13 events の場合新手法：5．1 σ
従来法： 3.5σ
1．5倍のSignificanceの改善

まとめ

－HAWC

- 1TeV－30TeV で多数のガンマ線源を検出／発見
- エネルギー分解能：～1000\％（PMTのヒット数による推定）
- フラックス系統誤差：～50\％（Late light simulation）
－Tibet AS＋MD
- 10TeV－数100TeV領域がターゲット
- エネルギー分解能：～20\％＠100TeV，～40\％＠10TeV
- S50（コアから50m地点の粒子密度）
- 従来と比べて格段に良いエネルギー分解能を達成

決定因子		$\begin{gathered} 100 \mathrm{TeV} \text { ガンマ線 } \\ \left(\theta<20^{\circ}\right) \end{gathered}$
S50	$\begin{gathered} -30+50 \% \\ \left(\sigma_{\ln \Delta \mathrm{E}}=\sim 0.4\right) \end{gathered}$	$\begin{gathered} 15+17 \% \\ \left(\sigma_{\ln \Delta \mathrm{E}}=\sim 0.16\right) \end{gathered}$
$\Sigma \rho$	$\begin{gathered} -30+50 \% \\ \left(\sigma_{\ln \Delta E}=\sim 0.4\right) \end{gathered}$	$\begin{gathered} -26+35 \% \\ \left(\sigma_{\ln \Delta \mathrm{E}}=\sim 0.3\right) \end{gathered}$

HAWC実験：陽子のエネルギー決定について

※ 藤井さんからのコメントについて

縦軸はLog Gaussian の標準偏差
$\rightarrow 0.3$ ：E resolution～100\％＠10TeV
$\rightarrow 0.2$ ：E resolution～58\％＠～1TeV
$\rightarrow 0.1$ ：E resolution～26\％＠～100TeV

https：／／arxiv．org／abs／1710．00890

TABLE II．Passing percentages for successive application of event quality cuts in simulation and data，including the ob－ served event rate in data．The percentages represent the frac－ tion of events that passed the previous cut，with the set of triggered events being the reference selection．

Cut	\％Passing	Data Event Rate	
	MC	Data	$[\mathrm{kHz}]$
No cut（trig．threshold）	100%	100%	24.7
Core \＆angle fit pass	99%	96%	23.6
$N_{\text {hit }} \geq 75$	31%	23%	5.7
$\theta<17^{\circ}$	8%	6%	1.5
$N_{r 40} \geq 40$	2%	2%	0.43

ガンマ線よりエネルギ一決定が良い原因
\checkmark 天頂角カットが厳しい $\theta<17.6^{\circ}$
\checkmark コア位置カットが厳しい
\checkmark ラテラル分布を使用
\checkmark 水タンク検出器では電磁成分と比べ るとミューオンとハドロンの光量が大 きくなるので，それらを多く含む陽子起源空気シャワーの方がエネルギー決定が良い可能性はある（推測）

HAWC実験： ToT Method

電荷量の測定
ToT ：Time over Threshold

2段階のしきい値 \rightarrow
ーつの大きなパルス
or
複数の小さなパルス
を判別

