

WLCG Lightwelight Sites

Mayank Sharma (IT-DI-LCG)

WLCG Sites

Grid Is a diverse environment (Various
flavors of CE/Batch/WN/ +various preferred
tools by admins for
configuration/maintenance)

ANSIBLE puppet

’ O
Fadaptive, et
slurm
workload manag
-« v
_4HTCONdY

@7 7" High Throughput Computing

WLCG Sites

Site Admin : require significant insight into
middleware and services for
Installing/configuring/maintaining grid
services and Infrastructure

Easier for bigger and experienced sites (T1
and many T2). Not very intuitive for smaller/
newer sites.

Potential of smaller sites

400k
300k
200k

100k

—

P —

8th BOINC Pentathlon 2017
o)) ;

NS

Survey results!

Link : http://cern.ch/go/rhV9

51 Sites respond to the questionnaire that
shows potential benefits of shared
repositories

Strong support for Docker, Puppet,
OpenStack images

http://cern.ch/go/rhV9

WLCG Lightweight Sites

We would like to have sites that can run with

minimal oversight and operational efforts
from people at the site.

They run almost "by themselves”.

Provide resources with preferred

technology with less effort (configuration
management, maintenance etc.)

Keep things basically the same for us, but
easler for admins

Lightweight Site Principles

1. Abstraction: to abstract the nuances of
several popular CE/WN/Batch technologies
as much as possible from site-admin’s view.

2. Modular Design: Allow admins to use

existing and popular tools for setting up their
sites.

3. Simple Deployment: Packaged into
containers/ VM's for easy distribution and
deployment

Lightweight Sites Principles

4. Centrally Configurable: Instead of
Individually configuring components on
nodes, configure everything at site level
rather

5. Extendable: A community driven effort to
develop implementations for various
CE/Batch in parallel

Lightweight Site Specification

- Describe the components of lightweight
sites.

Main function of the component
Configuration parameters

Communication protocols to interact with each
other

Repository structure for modular
Implementations

Deployment/Release processes
Maintenance guidelines

Lightweight Sites Components

1. Site Level Configuration File

Repositories for containers of different
CE/Batch/WN

N

Configuration Validation System
Central Configuration Manager
Networking strategy

File System (CVMFS)/ Caches

S

Site Level Configuration File

. A site-level YAML file to describe:

1. Site Infrastructure:

1. Hostnames, IP Addresses, OS/Kernel, SSH
access, Disk/ Memory/ CPU/ Network information

2. Grid Components:
1. Site Components: CE/Batch/WN/Middleware etc.

2. What to use(Arc, Condor, Slurm) and what
versions

Node on which they should be configured.

Component specific configuration(fetched from
component repositories)

Site Level Configuration File

3. Generic Site Info: Users, Groups, VO's, Host
Certificates

4. Misc Site Info: security emails, support emails
etc.

5. Background Technologies: preferred tools for
container orchestration(Kubernetes, Docker
Swarm)/ configuration management(Puppet,
Ansible) to be used for configuring the site.

Site Level Configuration File

component-info

ce

repo: “https://github.com/...”

type cream, arc, condor, other
hostnames ce-01.domain ce-02.domain

wn
repo https://github.com/...”

type pbs, condor, slurm

hostnames wn-01.domain wn-02.domain

batch
repo https://github.com/...”
type pbs, condor

Component Repositories

Publicly hosted repositories on GitHub that
provide
code for the images of CE/WN/Batch/Squid etc.

meta information for configuration of images
using different configuration management tools

1 repository for every component (for
Instance, CreamCE, CondorCE, Torque,
Slurm reside Iin separate repositories)

Component Repositories

- Repository Structure
L__yaim #General Component Description
ce—info.def component "Cream-CE"

_ Dockerfile schema: "cream-info" J}—

—— puppet — Version
——-ce—conf%g.yml type ” cream'
—— Dockerfile

—— meta-info.yaml

config-schema.yaml

cream-info: <«

wn_list: hostname array() Enforced by
users_conf: user_os() Configuration Validation

Engine

groups conf: group os()

Configuration Validation

- configuration validation engine to ensure
Information supplied in site configuration file:

« meets the configuration requirements of desired
site component

« Isrealizable on the available infrastructure using
available background technologies.

- http://cern.ch/go/CvS8

- Possibility to inject custom validation rules

Central Configuration Manager

The main module for centrally configuring
everything

Uses Validation Engine to check site-
configuration file

Checks status of available Site
Infrastructure that needs to be orchestrated

Installs and configures Grid components
from the repositories

Central Configuration Manager

Implements a Networking strategy
(overlay/ dedicated)

Ensures availablility of the File System
(CVMES) and Caches to the containers

Runs Tests like submitting jobs to check for
success or failure of site configuration

Specification: Put it together

Repositories

Site Infrastructure

t,l

2
+ 4 Site Infrastructure
Grid Components 4
1 Central ‘ a
1=—pp»! Configuration
Module 5
—
Generic Site Info 5

Site Admin
Misc Site Info

r

Background Technologies
Configuration Validation
Engine

15t Implementation

1. CreamCE + Torgue 2. Balch
, Tergue Client on WHN

= -

Site Infrastructure f
|2

2

CERN Infrastructure/ Cloud
provider

l
!

1—p Puppet Module [«

T

33

Grid Companents

B e N

Generic Site Info

ol

Site Admin

|
v |

Misc Site Info

=

Background Technologies ‘

command line utility -
Python

Implementation Status

CE: Cream
Batch: Torque
WN: Torgque client

Background Technologies:

Docker (containers)

Docker Swarm(container orchestration)
Puppet (configuration management)

Infrastructure: CERN OpenStack/ Public
cloud infrastructure providers (not yet final)

Implementation Status

Central Configuration Manager: Puppet

Configuration Validation Engine: Python
command line utility

Overall Status:

« Complete:
- Containers for CreamCE, TorqueWN (test job.®)
- YAIM based configuration of containers

« En-route (within 2 weeks):

Public repositories

Puppet module for central config management

More documentation

2"d Implementation: GSoC 2018

2 Google Summer of Code 2018 Projects

Background Technologies:
Docker (containers)
Kubernetes (container orchestration)
Ansible (configuration management)

Timeline (May 2018 — September 2018)

Supporting new components

- Modular design can support ARC, SLURM,
Condor etc.

- New repository for the components

« Dockerfile: instructions for setting up OS,
relevant packages, middleware.

Entrypoint/ init script. used by container to
configure itself on startup based on information
available through the central configuration
module.

Community

« Technical Discussion List (E-Groups):
Name: WLCG-Lightweight-Sites-Dev
Link: http://cern.ch/go/I9wZ

« Google Group (Open Source Community)
Name: WLCG Lightweight Sites
Link: http://cern.ch/go/Hz7S

http://cern.ch/go/l9wZ
http://cern.ch/go/Hz7S

Other ‘Lightweight’ ideas

Not classic grid sites.
Regional HTCondor Pools.

Small sites boot up containers that connect
to the regional pool for workloads

1 or 2 proof of concepts exist

On our roadmap after release of version
1.0.0

Questions

