Site Description

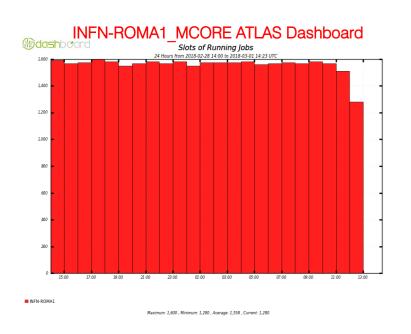
Alessandro De Salvo

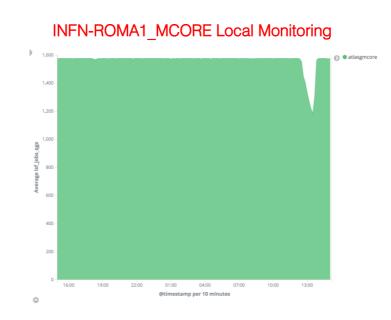
Jaroslava Schovankova 06-03-2018

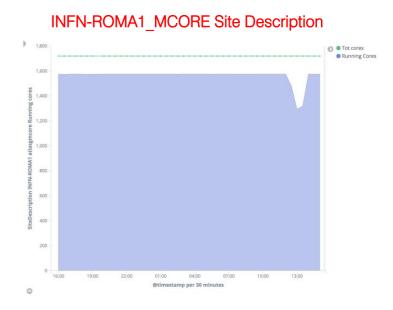
Short summary of the strategy

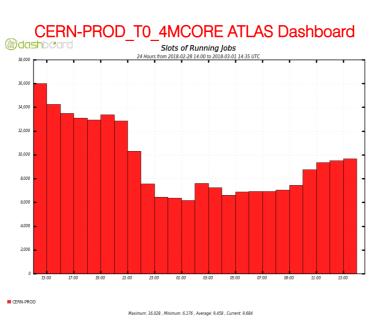
- The goal is to achieve a better site description with respect to what we currently have in Panda
- First approach: using GLUE 2
 - https://docs.google.com/document/d/1x_mqr_ VxosQvhvRNa26qcfNo6P9IVA9pckeU5_i2LQ/edit?usp=sharing
 - Not suitable for our purposes, values are not reliable enough
- Second approach: building custom maps directly from jobs
 - No need to touch the pilot, just embedding callbacks in other infrastructures
 - Only when autosetup is called with the panda resource name we need to send out the data
 - Ensures that data is collected only for grid jobs
 - Data is totally custom, so we need to write plugins/providers for the different batch systems we want to support
 - Can send data using curl, complete freedom on the info to send out and the collector
 - We can achieve both a deeper view of the batch queues and a deeper view of the nodes, associated to the panda resources they belong to
 - Info not ataached to jobs but to nodes and batch queues

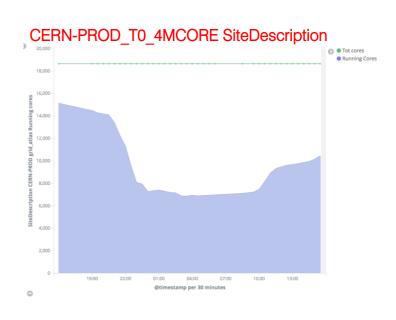
Current status of the collector

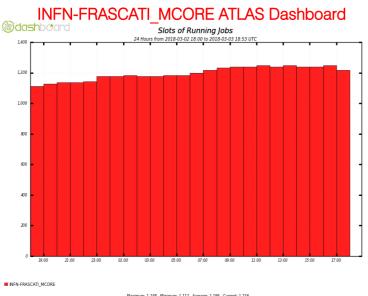

Initial protototype of the collector

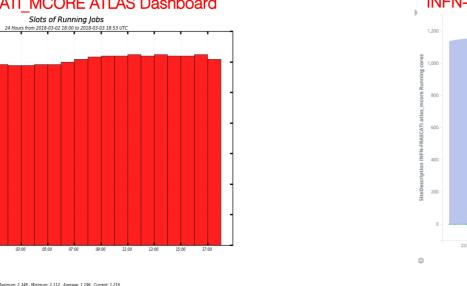

- Embedded in autosetup
- Supporting a subset of the batch systems
 - LSF, PBS and Condor
 - SLURM, SGE, and PBS experts are needed, as well as experts on "exotic" batch systems needed (is "arc" a batch system? Apparently yes, looking at AGIS)
- Shipping data via curl into rabbitMQ -> logstash -> ES in Roma
- Storing data for 1/10 of the job started
- CSV data shipped via CURL
 - Low CPU usage for logstash, single instance in Roma can handle all ATLAS nodes with a fraction of CPU used (could not do the same if parsing via grok/regexp)
- Many info already available via kibana
 - https://atlas-kibana.roma1.infn.it/goto/c8437edb46b281cd5446640f075bfba0
 - Example
 - Node address, name
 - Gateway (in case of natted nodes)
 - ATLAS site, Panda Site, Panda Resource -> node name
 - CPU model
 - Memory
 - # of CPUs
 - Queue name
 - Jobmanager type
 - Jobs pending/running/suspended in the queue
 - Total number of available slots (calculated, based on the internal nodes, for now available only for LSF and Condor)
 - ..

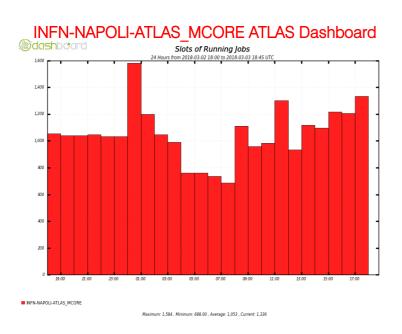


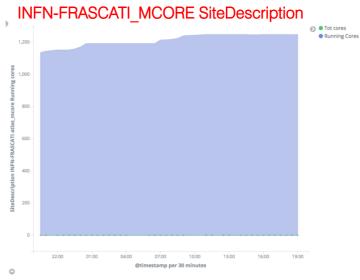

Checking collected data: LSF running jobs

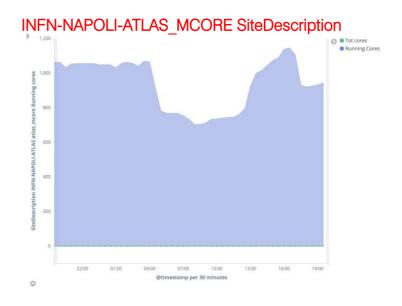


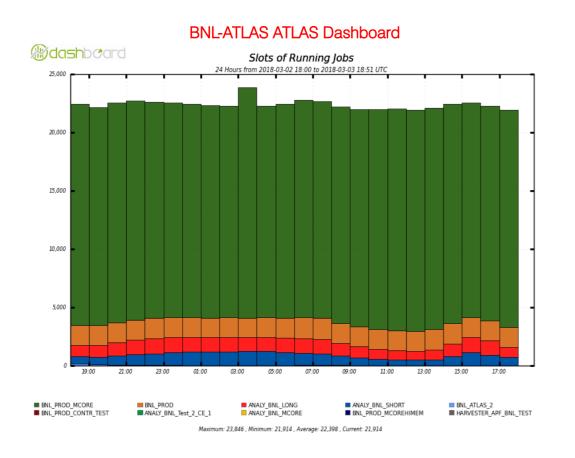


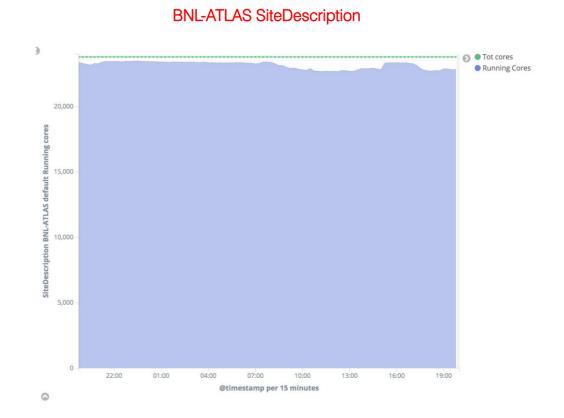

- Good agreement between the collector and the dashboard
 - Big advantage since we have the inner view of the queues, including the max number of jobs




Checking collected data: PBS running jobs




General good agreement between the collector and the dashboard


- But it's not possible (so far, at least) to derive e.g. the total number of slots without running privileged commands
- Running privileged commands could need to establish an agent or cron job e.g. from the Computer elements, plus a bit of scripting
- Some sites do not allow even the use of qstat in WN, in which case the probes are not effective

Checking collected data: HTCondor running jobs

General good agreement between the collector and the dashboard

- But not for all sites, still trying to understand why some of the sites are just reporting 0 running jobs, of sometimes twice
- Very complex task for Condor (thanks to Jarka for providing the support for it!)

What can we learn from this info?

Easy to derive several useful info

- Nuber of running/pending/suspended jobs in the internal batch queues
- Nodes shared among several Panda Resources
- Total number of slots (physical limit), but not in all cases if just running as unprivileged users
- Real usage of the site queues (e.g. "are we really filling up all the defined nodes?")
- ...

What can we also learn?

- Many sites are exposing strange values in AGIS
 - Example: different nomenclature HTCondor, HTCondorCE, condor for the same batch type
 - What is the "arc" jobmanager?
- Other sites are publishing a wrong JM type
 - Example, DESY is publishing to be pbs, while it seems it has UGE
 - Need to improve the batch systems autodetect features

Other questions

- How can we make an efficient use of this info from Panda?
- How to extend to the other batch systems?
 - We need SLURM, SGE and PBS experts to help building or improving the providers

Conclusions and next steps

- The initial collector prototype is able to give deeper views of the site internals and setup
 - But more coverage and batch experts needed
 - Extensible infrastructure, very easy to add more info, if available or possible to derive

Next steps

- Stabilize the current implementation of the probes
 - Extend the batch system types coverage
 - Crosscheck with problematic sites
 - Understand how to derive privileged informations
- Migrate to the official ES/Kibana (Analitics Platform)
 - Not difficult to achieve, everything should be already in place, just needs some coordination
 - Not a big amount of data, but we'll have to monitor and pack as needed
 - Information can be easily accessed via python, jypter notebooks, etc, and possibly injected in Panda for further usage (or used directly)
- Include the site description probes in HC, and eventually operate them from there
 - Lighter approach for sites, but we need to be sure the site coverage is complete in this way