

CLIC Damping Wiggler

Daniel Schoerling

October 3, 2009

Acknowledgments

- Remo Maccaferri, CERN
- Mikko Karppinen, CERN
- Yannis Papaphilippou, CERN
- Simona Bettoni, CERN
- Nuno Rio Duarte Elias, CERN
- Daniel Wollmann, CERN
- Alfons Ams, TU Bergakademie Freiberg
- Axel Bernhard, University Karlsruhe
- Johann Peter Peiffer, University Karlsruhe

Outline

1 Introduction

- CLIC Damping Ring
- Collaborations
- Superconducting Wires
- \blacksquare Magnetic field errors

2 Mock-up – Racetrack Design #1

- Simulation
- Optimal geometry
- \blacksquare Actual status
- **3** Mock-up Racetrack Design #2
- 4 Mock-up Double Helix
- 5 Future work

6 Summary

Introduction – CLIC Damping Ring

M. Korostelev: Optics Design and Performance of an Ultar-Low Emittance Damping Ring for the Compact Linear Collider

Introduction – Motivation

Target equilibrium emittances $\gamma \epsilon_x$ $\gamma \epsilon_y$ ϵ_t

${<}450\mathrm{nm}$	${<}3\mathrm{nm}$	${<}5000\mathrm{eVm}$
---------------------	-------------------	-----------------------

Introduction – Collaborations

- Technische Universität Bergakademie Freiberg, Germany
- Karlsruhe Institute of Technology, LAS, Germany
- Budker Institute of Nuclear Physics, Russia

Mock-up of Budker Institute ($\lambda_W = 50 \text{ mm}$)

SCU14, first ever installed

M. Wilson: Superconducting Magnets

NbTi	$ m Nb_3Sn$
Robust and ready to use	Brittle, needs thermal treatment
Stable	Unstable under certain circumstances
Standard EU and US Production	Only US Production
Limited Field	No practical field limit
1W/m heat deposition ¹	10W/m heat deposition ¹

¹L. China, D. Tommasini (2008): Comp. study of heat transfer from NbTi and Nb₃Sn coils to He

Introduction $- Nb_3Sn$ Strand

Properties

Bare diameter Cross section Stabilizer Non-Cu Volume Twist Pitch $\emptyset < 1 \text{ mm}$ Twist Pitch $\emptyset \ge 1 \text{ mm}$ Bare size tolerance Insulation Insulation build Ins. size tolerance

 $\begin{array}{l} 0.8 \ \mathrm{mm} \\ 0.5 \ \mathrm{mm}^2 \\ \mathrm{Cu} \\ 53\% \ \pm \ 3\% \\ 12 \ \pm \ 4 \ \mathrm{mm} \\ 40 \ \pm \ 10 \ \mathrm{mm} \\ \pm 5 \ \mu\mathrm{m} \\ \mathrm{S-Glass \ braid} \\ 130 \ \mu\mathrm{m} \ (\mathrm{nominal}) \\ \pm 15 \ \mu\mathrm{m} \end{array}$

Heat Treatment

Cycle with improved RRR and magneto-stability, B.Bordini

- #1 Increase T to $205^{\circ}C (25^{\circ}C/h)$, hold for 72 h
- #2 Increase T to 400° C (50° C/h), hold for 48 h
- #3 Increase T to $695^{\circ}C$ ($50^{\circ}C/h$), hold for 17 h

Measurements RRR > 300, B.Bordini

Handling

Method	Remarks	
React, Wind, Impregnate	Large bending radius (> 200 mm), reacted wire is brittle and rigid	
Wind, React, Impregnate	Fiber glass desizing, resid- ual cleaning, reaction in vaccuum or Ar gas	
Wet-Wind, React	Ceramics wet-winding, re- action in vaccuum or Ar gas	

B.Bordini, R.Maccaferri, L.Rossi, D.Tommasini, Test Report of the Ceramic-Insulated Nb₃Sn Small Split Solenoid, EDMS:907758

Introduction – Nb_3Sn Coils

Dedicated machine (2 persons)

- Coil size: 24 x 19 mm (WxH)
- Winding tension 50 N
- S2-glass pre-impregnation with ceramic adhesive
- Winding of few turns adjusting wire position
- Ceramics adhesive coverage
- Brushing helps homogeneity and removal of extra material (trade off between mechanical stability, insulation, and current density)
- Pre-curing by layers (10 mins) + confinement + hot air circulation to compensate for wire elasticity
- Measurement results;

 $I_{\rm max} = 599 \,\mathrm{A}, \, B = 10 \,\mathrm{T}, \, T = 4.3 \,\mathrm{K}$

Courtesy of R. Maccaferri and N. Elias

Magnetic field errors – Shimming

Reasons for field errors:

- Quality of pole material
- Persitent currents

Mechanical tolerances

These errors yield to a new trajectory

Deflection angle

$$I_1(z) = \int_{z_0}^z B_y(z')dz'$$

Displacement

$$I_2(z) = \int_{z_0}^z \int B_y(z') dz'^2$$

Courtesy of Daniel Wollmann

Possible Solutions:

- Mechanical shimming
- Shimming with integral correctors
- Active shimming with local correction coils
- Induction shimming

Racetrack Design #1 - 3D model

NKAD

EIBE C

Racetrack Design #1 - 2D Model Overview

Racetrack Design #1 – Field on Conductor

Racetrack Design #1 - Forces

Racetrack Design #1 – Inductance

CLIC Wiggler's optimum efficiency

Transverse equilibrium emittance $\gamma \epsilon_x$ at fixed wiggler length

$$L_w = 152 \,\mathrm{m}$$

M. Korostelev: Optics Design and Performance of an Ultar-Low Emittance Damping Ring for the Compact Linear Collider

Optimal geometry– NbTi and Nb_3Sn

LHC NbTi corrector wire #3, 1.25 x 0.73 mm² including insulation, 1.13 x 0.61 mm², Cu:Sc 1.71; 70% of maximal current density

 $0.8 \text{ mm} \text{ RRP Nb}_3 \text{Sn Strand};$ 70% of maximal current density

$\lambda_w \; [\mathrm{mm}]$	B [T]	$J_{c,70\%} \left[\frac{A}{mm^2} \right]$	$g_x [{ m mm}]$	$g_y \; [{ m mm}]$	$p_x \; [\mathrm{mm}]$	$\gamma \epsilon_x \ [\mathrm{nm}]$
35.00	1.62	900	10.88	10.36	6.62	>500
36.00	1.69	891	10.88	11.10	7.12	>500
37.00	1.76	882	10.88	11.84	7.62	>500
38.00	1.83	850	12.24	11.10	6.76	>500
39.00	1.90	841	12.24	11.84	7.26	475
40.00	1.97	845	12.24	11.84	7.76	450
41.00	2.03	837	12.24	12.58	8.26	450
42.00	2.10	797	13.60	12.58	7.40	450
43.00	2.17	801	13.60	12.58	7.90	400
44.00	2.23	794	13.60	13.32	8.40	400
45.00	2.29	787	13.60	14.06	8.90	400
46.00	2.36	762	14.96	13.32	8.04	400
47.00	2.42	755	14.96	14.06	8.54	375
48.00	2.48	749	14.96	14.80	9.04	375
49.00	2.54	726	16.32	14.06	8.18	375
50.00	2.60	720	16.32	14.80	8.68	375
51.00	2.66	723	16.32	14.80	9.18	375

Preliminary optimal geometry – Nb₃Sn wire

$\lambda_w \; [\mathrm{mm}]$	B [T]	$J_{c,70\%} \left[\frac{A}{mm^2} \right]$	$g_x [\mathrm{mm}]$	$g_y \; [\rm{mm}]$	$p_x [\mathrm{mm}]$	$\gamma \epsilon_x \ [nm]$
31.00	2.56	1860	10.88	12.58	4.62	375
32.00	2.71	1767	12.24	13.32	3.76	350
33.00	2.88	1776	12.24	13.32	4.26	350
34.00	3.02	1769	12.24	14.06	4.76	<350
35.00	3.17	1762	12.24	14.80	5.26	<350
36.00	3.34	1696	13.60	14.80	4.40	350
37.00	3.49	1690	13.60	15.54	4.90	350
38.00	3.64	1685	13.60	16.28	5.40	350
39.00	3.80	1627	14.96	16.28	4.54	350
40.00	3.96	1622	14.96	17.02	5.04	350
47.00	5.01	1504	17.68	20.72	5.82	350
48.00	5.16	1508	17.68	20.72	6.32	350
49.00	5.30	1505	17.68	21.46	6.82	350
50.00	5.45	1456	19.04	22.20	5.96	350
51.00	5.60	1460	19.04	22.20	6.46	375

Racetrack design #1 – Actual status

Racetrack design #1 - Actual status

Training

Comparison of calculated and measured field

Racetrack design #2 – Actual status

Double helix (R. Maccaferri and S. Bettoni)

Advantages:

- Half quantity of wire is needed.
- Short period.
- Iron poles can be easily replaced by holmium poles.

Double helix – Simulations

- $P_{max} \approx 32 \text{ MPa on the}$ straight part without considering thermal stress.
- Manufacturing is complicated and an on-going research field.

Double helix – Holmium

Holmium Atomic Number	67
Melting Point	$1474^{\circ}C$
Boiling Point	$2700^{\circ}\mathrm{C}$
Density	$8.80\mathrm{g/cm^3}$
Mechanical Properties	Relatively soft and malleable
Chemical Properties	Stable in dry air at room temperature
Cost, $99+\%$	10 CHF/g

Los Alamos National Laboratory's Chemistry Division

Double helix – Actual status

- **End 2009** Electromagnetic and mechanical design and realisation of a NbTi mock-up.
- Mid 2010 Electromagnetic and mechanical design and realisation of a Nb₃Sn mock-up.
- **Mid 2011** Design of a full scale prototype.
- **Mid 2012** Manufacturing & test of a full scale prototype.

Summary

- Optimization of CLIC damping wiggler geometrical configuration.
- Simulation of mock-ups.
- Manufacturing, testing, and optimizing of several mock-ups.
- Using Nb₃Sn
- Using Holmium for the double helix design.

Thanks!