
Grids and Clouds Interoperation:
Development of e-Science

Applications Data Manager on Grid
Application Platform

Hsin-Yen Chen & Wei-Long Ueng
Academia Sinica Grid Computing

5th EGEE User Forum
Uppsala, Sweden

Outline

• Principles of the e-Science Distributed Data
Management

• Introduction to GAP (Grid Application
Platform).

• Putting it to Practice
• GAP Data Manager Design
• Summary

The e-Science Data Flood

• Instrument data
• Satellites
• Microscopes
• Telescopes
• Accelerators
• ..

• Simulation data
• Climate
• Material science
• Physics, Chemistry
• ..

• Imaging Data
• Medical imaging
• Visualizations
• Animations
• ..

• Generic Metadata
• Description data
• Libraries
• Publications
• Knowledge base
• ..

3

There are several kinds of scientific data.

Data Intensive Sciences

Data Intensive Sciences dependdepend on Grid Infrastructures

Characteristics: any one of the following
• Data is produced at a very high ratevery high rate
• Data is inherently distributeddistributed
• Data is produced in large quantitieslarge quantities
• Data is needed/sharedneeded/shared by many people
• Data has complexcomplex interrelations
• Data has many free parametersparameters

4

A single person / computer alone cannot do all the work
Several Groups Collaborating in Data Analysis

Data Intensive Sciences depend on Grid Infrastructures

High-Level Data Processing Scenario

5

Data Data
SourcSourc
ee

PreprocessingPreprocessing
• Formatting
• Data descriptors

DistributionDistribution
• Transfer
• Replication
• Caching

StorageStorage
• Security

AnalysisAnalysis
• Computation
• Workflows

Science Science
DataData

InterpretationInterpretation
• Publications
• Knowledge
• New ideas

Science LibraryScience Library
• Indexing

Distributed Data Management

The traditional data processing scenario as this slides.

High-Level Data Processing Scenario

6

Data Data
SourcSourc
ee

PreprocessingPreprocessing
• Formatting
• Data descriptors

DistributionDistribution
• Transfer
• Replication
• Caching

StorageStorage
• Security

AnalysisAnalysis
• Computation
• Workflows

Science Science
DataData

InterpretationInterpretation
• Publications
• Knowledge
• New ideas

Science LibraryScience Library
• Indexing

Distributed Data Management

COMPLEXITY

The Moderning data processing is more complexity….

Principles of Distributed Data
Management

• Data and computation co-scheduling
• Streaming
• Caching
• Replication

7

Co-Scheduling:
Moving computation to the data

• Desirable for very large input data sets
• Conscious manual data location based
on application access patterns

• Beware: Automatic data placement is
domain specific!

8

Complexities

• It is a good idea to keep the large
amounts of data locating in the
computation

• Some data cannot be distributed
• Metadata stores are usually central

Combination of all of the above

9

Accessing Remote Data: Streaming

Streaming data across the wide area
• Avoid intermediary storage issues
• Processing data as it comes
• Allow multiple consumers and producers
• Allow for computational steering and
visualization

Data Consumer

10

Accessing Remote Data: Caching

Caching data in local data caches
• Improve access rate for repeated
access

• Avoid multiple wide area downloads

Data StoreClient Local
Cache

11

Data is replicated across many sites in a Grid
• Keeping Data close to Computation
• Improving throughput and efficiency
• Reduce latencies

Distributing Data: Replication

12

13

File Transfer

• Most Grid projects use GridFTP to transfer data
over the wide area

• Managed transfer services on top:
• Reliable GridFTP
• gLite File Transfer Service
• CERN CMS experiment’s Phedex service
• SRM copy

• Management achieved by
• Transfer Queues
• Retry on failure

• Other Transfer Mechanisms (and example
services):
• http(s) (slashgrid, SRM)
• UDP (SECTOR)
• scp (UNICORE)
• ..

Putting it to Practice

• Trust
• Distributed file management
• Distributed Cluster File Systems
• The Storage Resource Manager interface

• dCache, SRB, NeST, SECTOR

• Clouds File System
• HDFS

• Distributed database management

14

Peter Kunszt, CSCS
15

Transfer Protocols: FTP, http, GridFTP, scp, etc..

Storage

Distributed
Caching and
P2P Systems

Distributed
File Systems

Managed,
Reliable
Transfer
Services

File System

Client

Peter Kunszt, CSCS
16

Trust

Trust goes both ways
• Site policies:
• Trace what users accesses what data
• Trace who belongs to what group
• Trace where requests for access come from
• Ability to block and ban users

• VO policies:
• Store sensitive data in encrypted format
• Managing user and group mappings at VO
level

Peter Kunszt, CSCS
17

File Data Management

• Distributed Cluster File Systems
• Andrew File System AFS, Distributed GPFS,
Lustre

• Storage Resource Manager SRM interface
to File Storage
• Several implementations exist: dCache,
BeStMan, CASTOR, DPM, StoRM, Jasmine,
Storage Resource Broker SRB, Condor NeST..

• Other File Storage Systems
• iRODS, SECTOR, .. (many many more)

18

Managed Storage Systems
• Basics

• Stores data in the order of Petabytes
• Total-throughput scales with the size of the installation
• Supports several hundreds to thousands of clients
• Adding / removing storage nodes w/o system
interruption

• Supports posix-like access protocols
• Supports wide area data transfer protocols

• Advanced
• Supports quotas or space reservation, data lifetime
• Drives back-end tape systems (generates tape copies,
retrieves non cached files)

• Supports various storage semantics (temporary,
permanent, durable)

• System improves access speed by replicating 'hot
spot‘ datasets, internal caching techniques, etc

Grid Application PlatformGrid Application Platform

• Grid Application Platform (GAP) is a grid application framework
developed by ASGC. It provides a vertical integration for
developers and end-users

– In our aspects, GAP should be

• Easy to use for both end-users and developers.

• Easy to extend for adopting new IT technologies, the adoption
should be transparent to developers and users.

• Light-weight in terms of the deployment effort and the system

overhead.

Grid Application Platform (GAP) is an environment for developing scientific grid applications. GAP clearly defined a layered architecture that recommended application developers to follow the Model-View-Controller design pattern to create user-friendly, easy-maintained application services. This architecture consists of three frameworks, each of them corresponds to certain routine works that developers need to go through while making a new application service on the grid.
GAP stands for Grid Application Platform, it’s developed by ASGC.
and it’s a java-based platform, it provides a vertical integration
 includes high-level application user interface and a variety of low-level grid job scheduling and management tools.

in our aspects

The layered GAP architecture

Interfacing
computing resources

High-level
application logic

Re-usable
interface components

Reduce the effort of developing application services

Reduce the effort of adapting new technologies

Concentrate efforts on applications

Considering the reusability, GAP does not only provide a layered architecture which has three independent frameworks to accomplish these tasks
but also keep the reusability.
these three frameworks all provide a well-defined interface to communicate each other.
The bottom of this figure is the distributed computing environments, and we have core framework to handle them.

Core framework - In core framework , we simplify USER and JOB management and the access to utility application by a set of well-defined APIs,
Such as proxy initialization, user login/logout, submit or delete your job, copy or move data, etc.
There are many kinds of computing environments, GRID is just one of them.
so, based on Core framework
Application framework - we introduce an action based approach of developing advanced applications for problem solving,
The framework sees the application as a collection of commands corresponding to certain application actions and implements an interface for adapting and executing commands.
the outcome of the approach is a collection of reusable command which can be reutilized to speedup the development of a new application service.

finally
Presentation Framework can adopt any kind of java-based presentation framework to meet user’s requirement of interface customization.

Advantages of GAPAdvantages of GAP

21

• Through GAP, you can be a
• Developer
– Reduce the effort of developing application services.
– Reduce the effort of adopting new distributed computing

technologies.
– Concentrate efforts on implementing application in

their domain.
– Client can be developed by any Java-based technologies.

• End-user
– Portable and light-weight client.
– User can run their grid-enabled application as simple as

using a desktop utility.

What’s the advantage you can get through GAP?
for developer
 you can reduce the effort of developing application service
 just reuse the APIs which are already provided by these three frameworks...

 and you can also reduce the effort of adopting new distributed computing technologies..
 once the core framework implements the support of the new distributed computing technologies
 the application framework and presentation framework can adopt it with few impact.

you can concentrate the efforts on implementing application in your domain.

 and of course, GAP is developed in Java, you can develop your user interface by any java-based technologies...
 like java swing, Java ServerFaces it is a java-based web application framework, Struts ... and more...

for end-user
 user can have a portable and light-weight client which means you don’t have to install any gird component.
 and the client is cross-platform, you can use the client on Window, Linux, Solaris and of course MacOS
 and this is just like a desktop utility which is very simple to use for end-user....

[NO!!]
eg. one-click job submission...

Features

• Application-oriented approach focuses developers effort
on domain-specific implementations.

• Layered and modularized architecture reduces the
effort of adopting new technology.

• Object-oriented (OO) design prevents repeating tedious
but common works inbuilding application services.

• Service-oriented architecture (SOA) makes the whole
system scalable.

• Portable thin client gives the possibility to access the
grid from end-users desktop.

22

The GAP (V3.1.0)

• Can’s
• simplify User and Job management as well as the access to the Utility

Applications with a set of well-defined APIs
• interface different computing environments with customizable plug-ins

• Cannot’s
• simplify Data management

The GAP introduces an abstraction layer for interfacing the elementary tools deployed on distributed computing environments. The details and differences of interfacing heterogeneous computing environments (e.g. resource specification, job and user management, data movement, etc.) are simplified and unified by a set of well-defined Java APIs.

Why?

• Distributed data management is a hard problem
• There is no one-size-fits-all solution (otherwise
Condor/Globus/gLite/grid would´ve done it!)

• Solutions exist for most individual problems
(learn from RDBMS or P2P community)

• Integrating everything into an end-to-end
solution for a specific domain is hard and ongoing
work

• Many open problems!!

24

And why the GAP cannot simplify Data management?

The GAP Data Manager Framework
Objective

• Integrate different storage resources.
• Cluster File System.
• gLite / SRM / Storage Element.
• Hadoop File System.

• Integrate different database resources
• RDMS
• HBase

• Hope to meet
• Different user requirements

Data Manager Framework Development

• Data Manager Framework development
consists of
• Interfacing underlying difference storage and

database resources
• Implementing Data Management logics
• Designing Well-Define interfaces

Many efforts can be reused to speedup the development

How do I benefit from Data Manager
Framework?

Cluster FS

grid application

SRM HDFS

modified

When I develop a grid application, Interfacing storage environments is an importation issue.
If I face a Cluster FS, My grid application should be suitable for Cluster FS environment.
But there are the other kinds of storage environment, like Castor, dCatch or SRB.
I must to modify my application to use SRM.
This method is too expensive and no flexible.
So, In our core framework , we simplify Data management.

How do I benefit from Data Manager
Framework?

DM object

hide the difference

unique interface

In Grid Application Platform, We implement unique Data Management object interface for different Storage Environment.

In this way,
When I use Data Management framework to Adopt to Storage. My grid application will face an unique interface.
This approach can hide all the difference bellow storage environments backend.

GAP Data Manager Design Goal

• Single namespace
• Single interface to difference DM solutions
• Support variety of storage types

– Grids and Clouds

• Support non-structure and structure data
• Job management integration
• Authentication and Authorization
• Replication

Hadoop File System (HDFS)

• HDFS is designed to store large files across
the machines in a large cluster

• Highly fault-tolerant
• High throughput
• Suitable for applications with large data sets
• Streaming access to file system data
• Can be built out of commodity hardware

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems.

GAP Data Manager Archiecture

GAP Data Manager APIs

Authentication

Authorization

…HBaseSRMGridFTPHDFSDAV

File Systems Table
AMAG
APIs

Cluster FS SRM
gLite / SE

AMAG
File Metadata

Catalogue

Demo

Summary

• Integrate different storage resources on GAP to provide
more options of heterogeneous data management
mechanisms.

• This work also demonstrated lots of viable alternatives
to Grid Storage Element, especially in terms of
scalability, reliability, and manageability.

• Enhances the capability of parallel processing and also
versatile data management approaches for Grid.

• GAP could be a bridge between Cloud and Grid
infrastructure and more computing framework from
Cloud would be integrated in the future.

Thank you for your attention
and great inputs!

Backup Slides

39

Storage Resource Manager
Interface

• SRM is an OGF interface standard
• One of the few interfaces where several implementations exist

(>5)

Main featuresMain features
• Prepares for data transfer (not transfer itself)

§ Transparent management of hierarchical storage backends
§ Make sure data is accessible when needed: Initiate restore from

nearline storage (tape) to online storage (disk)
• Transfer between SRMs as managed transfer (SRM copy)
• Space reservation functionality (implicit and explicit via space

tokens)

So as you know
SRM is an unique interface for accessing diffident backend storages for diffident middleware.
And it’s easy to develop applications to adapt different backend storages.
The SRM provide space and file management on the storage system.
And it is the web service interface and the implementation usually depends on the backend storage technology

40

Storage Resource Manager
Interface

SRM v2.2 interface supportsSRM v2.2 interface supports

• Asynchronous interaction
• Temporary, permanent and durable file and space
semantics
• Temporary: no guarantees are taken for the data (scratch space or
/tmp)

• Permanent: strong guarantees are taken for the data (tape backup,
several copies)

• Durable: guarantee until used: permanent for a limited time

• Directory functions including file listings.
• Negotiation of the actual data transfer protocol.

According to the SRM v2.2,
SRMs can support 3 types of files and corresponding storage space types. It is
possible to assign volatile files to volatile, durable and permanent space. Durable
files to durable and permanent space. Permanent files to permanent space only.

HDFS Architecture

41

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, a master server that manages the file system namespace and regulates access to files by clients. In addition, there are a number of DataNodes, usually one per node in the cluster, which manage storage attached to the nodes that they run on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, a file is split into one or more blocks and these blocks are stored in a set of DataNodes. The NameNode executes file system namespace operations like opening, closing, and renaming files and directories. It also determines the mapping of blocks to DataNodes. The DataNodes are responsible for serving read and write requests from the file system’s clients. The DataNodes also perform block creation, deletion, and replication upon instruction from the NameNode.

File system Namespace

4/13/2010
42

• Hierarchical file system with directories and files
• Create, remove, move, rename etc.
• Namenode maintains the file system
• Any meta information changes to the file system

recorded by the Namenode.
• An application can specify the number of replicas

of the file needed: replication factor of the file.
This information is stored in the Namenode.

Data Replication

4/13/2010
43

• HDFS is designed to store very large files across
machines in a large cluster.

• Each file is a sequence of blocks.
• All blocks in the file except the last are of the

same size.
• Blocks are replicated for fault tolerance.
• Block size and replicas are configurable per file.
• The Namenode receives a Heartbeat and a

BlockReport from each DataNode in the cluster.
• BlockReport contains all the blocks on a Datanode.

