

Deployment and Management of Grid Services for a data intensive complex infrastructure

Álvaro Fernández (IFIC – Valencia) 5th User Forum Uppsala, April 2010

www.eu-egee.org

- Motivation for the talk
- Proposed Solution
- Computing and Storage Hardware
- Configuration and Management
- Developments

eGee

Conclusions and Future

- Several user communities require access to computational and storage resources in efficient manner.
 - National Grid Initiative applications
 - Grid-CSIC
 - Atlas Tier2 and Tier3
 - Local users
- Different kinds of applications and data access patterns
 - Parallel and sequential Applications
 - Public and private data. Need for sharing policies
 - File size varies, sequential and random access

- To use grid technologies that we have been working with, and Hardware and Software configurations that alow to grow in the future.
- Storage and Network Hardware based on a NAS
- Lustre as a parallel backend filesystem
- Storm as a Storage Resource Manager for our disk based storage
- Grid Services based on glite
- Development of plugin, Tools and High level applications for user commodity

Computing Hardware

Enabling Grids for E-sciencE

Atlas VO resources

GGGGG

- 32 + 19 nodes HP DL160
 - 2xQuad Core Xeon E5472 @3.0GHz
 - 16 GB RAM
 - 2xHD SAS 134 BG RAID 0

- Grid-CSIC resources
- Sequential: 106 nodes
 - 2xQuad Core Xeon E5420 @2.50GHz
 - 16 Gbytes Ram
 - 2xHD SAS 134 BG RAID 0
 - Parallel: 48 nodes
 - Same as before with Infiniband Mellanox Technologies MT25418 DDR 4x
 - Total cores : 1704

- Tape library for long time storage (with legacy castor sw)
- Disk servers to store online data (as part of Tier-2 requirements)
 - Fast access and always available

• Sun X4500/X4540 server

- 48 disks (500Gb/1Tb), with 2 disks for OS
- Redundant power supply
- 4x1Gb Ethernet ports
- Scientific Linux IFIC v4.4 with Lustre kernel
- Ext3 system (volumes until 18/36 Tib)

Storage servers configuration

IFIC tested best configuration:

- Disks in raid 5 (5x8 + 1x6). Usage ratio of 80%
- Best performance with 1 raid per disk controller
- Bonnie++ aggregated test results:
 - Write: 444,585 KB/s
 - Read: 1,772,488 KB/s
- Setup:
 - We have 21 servers providing a raw capacity of around 646 TB

Data Network based on gigabyte ethernet.

10GB uplink to the backbone network

Enabling Grids for E-sciencE

Cisco 4500 – core centre infrastructure. Cisco 6500 – scientific computing infrastructure Data servers with 1GB connection. Channel bonding tests were made. We aggregate posibly 2 channels in future.

WNs and GridFTP servers
 with 1GB

eGee

Lustre installation

Enabling Grids for E-sciencE

- We chose Lustre because is a Petabyte scale posix filesystem, with ACL and quotas support. Opensource and supported by SUN/Oracle. In our installation with a single namespace (/lustre/ific.uv.es):
- MGS: Management Server (1 per cluster) + MDS: Metadata Server.
 (1 per filesystem)
 - 2xQuadCore Intel(R) Xeon(R) CPU
 - 32 GB.
 - Planned to add HA
 - Currently 4 Filesystems (MDT)

- OSS: Object Storage Server. (Several per cluster guaranteeing scalability) 1 in every SUN X4500.
 - 6 OSTs per server (raid-5 5x8 + 1x6)

• **Clients**. (SL5 kernel with lustre patches), mainly User Interfaces (UI) and Worker Nodes (WN) with configurations in RW and RO mode

Filesystems and Pools

Enabling Grids for E-sciencE

- With the Lustre release 1.8.1, we have added pool capabilities to the installation.
- Pools Allow us to partition the HW inside a given Filesystem
 - Better data management
 - Assign determined OSTs to a application/group of users
 - Can separate heterogeneous disks in the future

•4 Filesystems with various pools:

•/lustre/ific.uv.es Read Only on WNs and UI. RW on GridFTP + SRM

 /lustre/ific.uv.es/sw. Software: ReadWrite on WNs, UI

/lustre/ific.uv.es/grid/atlas/t3 Space for T3
 users: ReadWrite on WNs and UI

•xxx.ific.uv.es@tcp:/homefs on /rhome type lustre. Shared Home for users and mpi applications: ReadWrite on WNs and UI

egee

Quotas

- Applyed per Filesystem
- For the Users in the Tier3 space
- For the Shared Home Directory
- Not being applied in general VO pools/spaces because all data is common for the VO

Lustre management

• ACLs

- Applied in the different VO pools/spaces to allow policies to be implemented (ie: only some managers can write, all users can read)
- In the User and shared home directories
- In the SW directories
- This to be respected by the higher Grid Middleware Layers (STORM part of the presentations)

- Interface of the storage network with the GRID.
- For disk based Storage Elements
- Implementing SRMv2.2 specification.
- Allows accessing Lustre filesystem with the posix interface.

Storm local implementation & policies

- Access like a local file system, so it can create and control all the data available in disk with a SRM interface. (BE + FE Machine)
- Coordinate data transfers, real data streams are transferred with a gridFTPserver in another physical machine. (Pool of gridfts)
- Enforce authorization policies defined by the site and the VO. (users are mapped to common vo account)
- We Developed Authorization plugin to respect local file system with the corresponding user mappings and ACL's LocalAuthorizationSource

EGEE-III INFSO-RI-222667

Other Services: SEView

Enabling Grids for E-sciencE

- Besides posix CLI:
- IFIC users additionally can access data through a WEB interface.
- Ubiquitous and X.509 secured easy read-only access.
- Developed with GridSite

Activo Edua yor Higana Bacadores Herranierijas Angda

Directory listing /lustre/ific.uv.es/grid/

[Parent	directory]	
<u>atlas/</u>	4096 12:53	26 Jun 08
dteam/	4096 00:23	28 Nov 07
ific/	4096 17:15	19 Mar 08
ops/	4096 10:49	23 Jul 08
swetest	4096 00:24	28 Nov 07

You are /DC=es/DC=irisgrid/O=ific/CN=Alvaro-Fernandez Switch to HTTP. Built with GridSite 1.5.2

<u>File Edt View Co B</u> ookmarks <u>T</u> ools <u>H</u> elp			0		
🖕 • 🏟 - 🥩 🕃 😭 🌆 http://fic.uv.es/atlas-t2-es/uan/main-AOD.html		Y 🖗 Go 💽			
🗋 Red Hat, Inc. 🗋 Red Ha: Network 🖹 Support 🖹 Shop 🖹 Products 🛅 Faining 🗎 Personal-Folder					
AODs at UAM			×		
IFIC - Instituto de Física Corpuscular			*		
			2		
AODs at UAM					
Dataset name		AODs at	Total size		
		UAM	(GB)		
calib1_mc12.007003.singlepart_e_Ef25.recon.AOD.v12003104_tid004160_		9 💼	0.101		
trig1_misal1_mc12.006309.HerwigVBFH110gamgam.recon.AOD.v12000604		62	2.995		
trig1_misall_mc12.005661.PythiaExcitedQ.merge.AOD.v12000604		1	0.518		
trig1_mixal1_mc12.006309.HerwigVBFH110gamgam.recon.AOD.v12000604_tid009574		62	2.995		
trig1_msall_mc12.006348.Pythia_TTbar_Hplus110_taunu.rccon.AOD.v12000601_tid006420		16	1.468		
mc12.006251.AcerMCabar.alfast.AOD.v12000602_tid008544	99	94	21.295		
trig1_misall_testIdeal_06.005702.PythiaB_BsJpsiphi.recon.AOD.v12000501_tid005259		0	0.000		
mc12test_misa11_testIdeal_06.005702.PythiaB_RsJpsiphLrecon.A(D1.v12000502_tid005576		0	0.000		
trig1_misal1_csc11.005107.pythia_Wtauhad.recon.AOD.v12000502_tid005430		20	2.008		
http://flic.uv.es/atlas-t2-es/uam/d6184132-ca0a4b7-b988-9fcd205a1b31.html					

WEB Interface to check datasets (Atlas groups of files) at the Distributed Tier-2

EGEE-III INFSO-RI-222667

- Presented a data management approach for multi-VO in a computer centre based on grid technologies and mature software.
 - Tested well in stress tests (Step09,UAT)
 - more challenges to come, prepared to manage problems
- Lustre gives good performance and scalability to grown next year until Petabyte scale.
- Storm presents our disk-based storage to the grid.
 - Performed very well, and suits our necessities.
 - We would like it to continue not to being a complex system
- In the future, deploy an implementation for HSM and Lustre:
 - Follow CEA/Oracle work on this, these days: http://wiki.lustre.org/index.php/Lustre_User_Group_2010)

More information:

- https://twiki.ific.uv.es/twiki/bin/view/Atlas/Lustr eStoRM
- https://twiki.ific.uv.es/twiki/bin/view/ECiencia/W ebHome
- Alvaro.Fernandez@ific.uv.es

Thanks for your attention !