

Dark energy in the GRID The PAU survey project

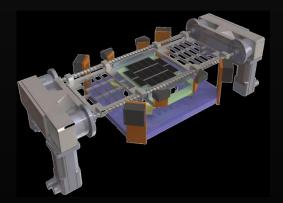
Presenter: Nadia Tonello (PIC)

Co-authors: C. Neissner (PIC)

S. Serrano (IEEC)

Outline

- Description of the PAU survey project
 - Features
 - Requirements
- Activity at PIC related to the project
- Data flow
 - Pipeline
 - Jobs management
- Future projects: database



Physics of the Accelerating Universe

Aim put constraints on cosmological parameters for the study of the acceleration of the universe: DARK ENERGY

Method Large field of view telescope camera with low-resolution spectroscope ~200 deg² of astronomical images in fits format, taken with ~ 40 narrow band filters ~100 Å wide

Data Reduction process Catalog of a large sample of galaxies in a huge volume (spectral energy distribution)

Example of a possible filter set for the PAUCam

Physics of the Accelerating Universe

Requirements:

Storage: simulated data – results in tapes

Security: two independent Roles into the same vo:

PAUS: DES images in fits format, used as a testing

tool for the data pipeline

MICE: dark matter particles evolution in huge

volume (Marenostrum supercomputing center, Barcelona)

Scalability of pipeline: data reduction of simulated data (FITS files) must be scalable to analyze future real data
In design phase

Activity at PIC

- Data Management
 - D0T1 permanent raw data storage (simulation files)
 - D1TX rapid access to results of the reduction process
 - \nfs buffer disk for temporal access during data process (direct reading from dCache in phase of study)
 - VO: vo.paus.pic.es Role=mice and Role=paus
 Different data access policy, but possibility to share data
 - Web page https://cosmo.pic.es with user guide to data access and general information on data management activities
- Software for data reduction pipeline definition on simulated data
- Database (future project)

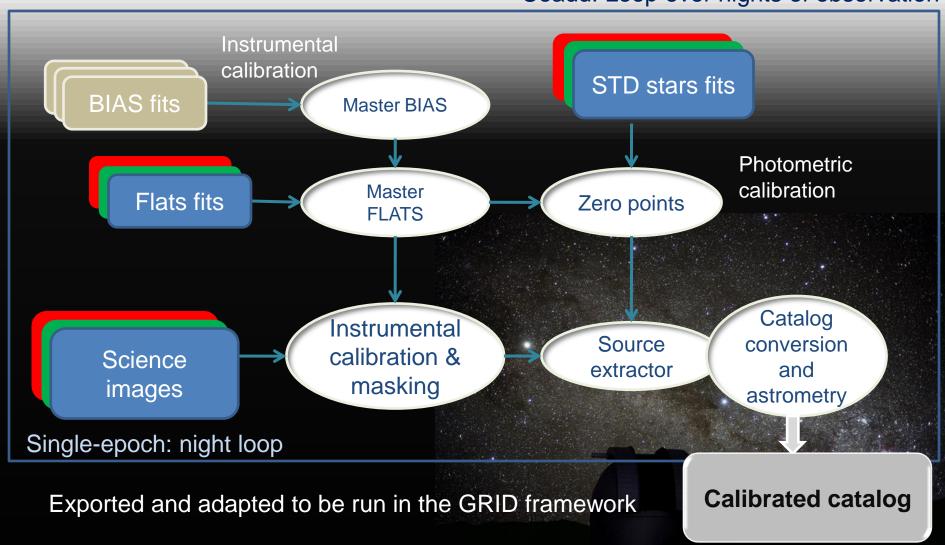
Reduction process

- Main script in python
- Configuration files with all the parameters selected to run the entire analysis.

```
Part 1: INITIALIZATION and PRE-PROCESS (wms-job)
Create list of files stored in tapes to work with
Pre-stage (dcap)
Copy files to /nfs/
Master-BIAS (filter independent)
Part 2: CALIBRATION (DAG jobs: one for filter)
Instrumental calibration and masking
```

REDUCTION (parallel jobs)

Reduction software applied to scientific images

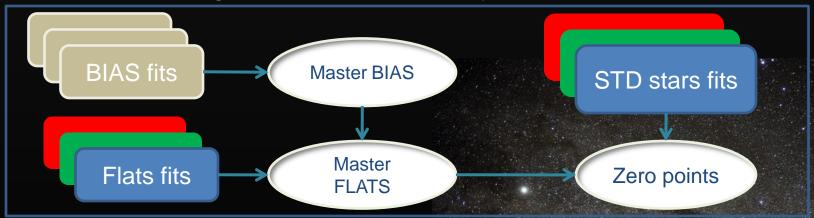

Photometric calibration

The Pipeline

Coadd: Loop over nights of observation

Part 0: Pre-processing

- From configuration file: parameters for the analysis
 - List of files to copy from tape to /nfs/
 - Prestage of files D0T1
 - srmCP to /nfs
 - Decompress fits.gz files



PART 1: Calibration

Instrumental calibration

- Bias runs
- flats runs
- masking cosmetics, cosmic rays traces, satellites traces

Master MASK: cosmetics, cosmic-rays, saturated pix.

Photometric calibration

Standard stars images (SDSS Stripe 82)
Calibration: source extraction and matching
Magnitude calibration factor
Headers of simulated files

PART 2: Scientific images reduction

Reduction pipeline for each image

- Instrumental calibration
- Source extraction (SExtractor)
- Catalog conversion and Astrometry (SCAMP)
- Production of a calibrated catalog

JOBS MANAGEMENT

main.py

Initialization of configuration parameters

JOB: Pre-stage and Master BIAS

- Check job status function
- Configuration of DAG-job jdl (one per filter)

```
DAG
A: Calibration
B: Image 1
Image 2
Image 3
```


Database

- In design phase
- Information about:
 - Scientific objects (galaxies: position, magnitude, shape, etc..)
 - DM metadata (file location, access permissions, etc...)
- Based on DES database, with some differences:

Access limited to 10-20 users

Low query rate

High number of objects and parameters (109 entries, 200 params per object)

Estimate size: 1TB

IMPACT

- Availability of data to all members of the user community
- Data chain parallel to the 'official' DES reduction code, to analyze simulations by the DES collaboration
- Pipeline used for the simulation is easily adaptable to the PAU survey data structure.
- Exchange of experience in dealing with astronomical data with MAGIC collaboration

Summary

- The PAU survey will take data in some years, producing information of a huge number of objects. Results will be organized in catalogs.
- Simulation files are managed at PIC and used to make preliminary studies and test the data reduction pipeline.
- Data pipeline we are designing and testing in the GRID environment will be flexible enough to fit the requirements of the real data.
- JOBS manager is written in python and allow us to run and check the status of many jobs running in parallel and in an easy way for the user.
- A database for the resulted catalogs is in project.