

Enabling Grids for E-sciencE

Grid-enabled parameter initialization for high performance machine learning tasks

Kyriakos Chatzidimitriou, Fotis Psomopoulos and Pericles Mitkas Thessaloniki, Greece

www.eu-egee.org

Presentation Overview

- Introduction to the scope of work
- The algorithm
 - NeuroEvolution of Augmented Reservoir (NEAR) = NeuroEvolution of Augmented Topologies + Echo State Networks (NEAT + ESN)
- Questions we want to answer
- Testbeds
 - Supervised learning
 - Reinforcement learning
- Experimental setup
- Results obtained
- Conclusions
- Future work

Introduction

Enabling Grids for E-sciencE

Approach – Problem – Solution

- Reinforcement Learning paradigm
 - appropriate for agents
- Real world/complex tasks
 - Function Approximator
- Echo State Networks
 - → Non-linear/Non-Markovian tasks
- Evolution and learning
 - → adapt the reservoir to the problem at hand
- How?
 - → NeuroEvolution (NEAT) and Temporal Difference learning

Hierarchy of involved areas

Echo State Networks

Enabling Grids for E-sciencE

An Echo State Network (ESN) [Jaeger, 2001 & 2002]

Neuro Evolution of Augmented Topologies

Enabling Grids for E-sciencE

- Start minimally & complexify
- Weight & structural mutation
- Speciation through clustering to protect innovation
- Crossover networks through historical markings on connections

[Stanley, PhD, 2004]

NeuroEvolution of Augmented Reservoirs (NEAR)

- Use NEAT as a meta-search method
- **Start from minimal reservoirs (1 neuron)**
- Perform weight and structural mutation
 - Add neurons, add connections
- **Maintain ESN constraints**
- Apply speciation through clustering
 - Similarity metric ~ Reservoir's Macroscopic Features (Spectral Radius, Reservoir Neurons & Sparseness)
- Apply crossover using historical markings on neurons
- Identical performance and in some cases better against "rival" algorithms
- Work under review

We ask the following questions:

Selection Degree of elitism With crossover Reproduction Mutation only Speciation Fitness Individualism Continuous complexification Crossover Survival of the fittest Sparse Reservoir Dense

- Questions are formulated as sets of parameters
- Experimentation to answer them

- 7 problems
- 5 parameters
- 64 parameter sets
- 30 runs per experiment
- A total of 13440 evolutionary procedures
- Population of 100 individuals
- Evolutionary process of 100 generations
- 13.44 10⁷ networks were evaluated

Testbeds – Time Series

- Time Series
 - Mackey-Glass
 - Multiple Superimposed Oscillator
 - Lorentz Attractor
- Predict the next value of sequence
- Train on sequence T
- Calculate fitness, 1/NRMSE, by feeding output to input on F chunks of sequence T
- Validate on sequence V

Mackey Glass

MSO

Lorentz Attractor

Testbeds – Reinforcement Learning

- Reinforcement Learning
 - Single and Double pole balancing
 Balance one pole, or two poles of different lengths and masses for more than 100.000 time steps

- 2D and 3D mountain car
 Escape from a valley by moving the car in two or three dimensions, starting from random states
 - 10 runs for 3D due to extremely large execution time

Mackey-Glass

Enabling Grids for E-sciencE

Performance measure: Validation NRMSE

Rank	Perf.	Elitis m	Crossover	Speciation	Complexify	Sparse
1	1.09 10-3	40%	Yes	No	Yes	No
2	3.04 10-3	30%	Yes	No	Yes	No
3	3.50 10-3	10%	No	No	Yes	No
4	3.61 10-3	40%	Yes	Yes	Yes	No
5	4.35 10-3	10%	No	No	No	Yes
	•••			•••	***	
60	3.27 10-1	40%	Yes	No	No	Yes
61	3.55 10 ⁻¹	10%	Yes	No	No	No
62	2.22 10 ²	40%	No	No	No	Yes
63	3.07 10 ⁷	30%	No	No	Yes	No
64	3.07 10 ⁷	20%	No	Yes	Yes	Yes

Inconclusive

Performance measure: Validation NRMSE

Rank	Perf.	Elitis m	Crossover	Speciation	Complexify	Sparse
1	8.8 10-1	10%	No	No	No	No
2	8.86 10-1	20%	No	No	No	No

- The most difficult task
- Know to be an especially difficult task for ESNs
- Even the best results exhibit poor error behavior
- The poor performance does not allow us to derive concrete conclusions

Lorentz Attractor

Enabling Grids for E-sciencE

Performance measure: Validation NRMSE

Rank	Perf.	Elitis m	Crossover	Speciation	Complexify	Sparse
1	7.56 10-2	40%	Yes	No	Yes	No
2	7.63 10-2	40%	Yes	No	Yes	Yes
3	7.64 10-2	10%	No	No	No	Yes
4	7.67 10-2	20%	Yes	No	No	Yes
5	7.69 10-2	40%	No	No	Yes	Yes
	•••					
60	1.02 10-1	10%	Yes	No	No	No
61	1.09 10-1	10%	Yes	Yes	No	No
62	1.10 10-1	10%	Yes	No	No	Yes
63	1.18 10-1	10%	Yes	No	Yes	No
64	1.20 10 ⁻¹	10%	Yes	Yes	Yes	No

2D Mountain Car

Enabling Grids for E-sciencE

 Performance measure: avg # steps escaping the valley from 1000 random starting states

	Rank	Perf.	Elitis m	Crossover	Speciation	Complexify	Sparse
	1	-50.90	40%	No	No	Yes	No
	2	-51.15	10%	Yes	No	Yes	Yes
	3	-51.21	10%	No	Yes	No	No
	4	-51.24	20%	Yes	No	No	No
	5	-51.28	40%	Yes	No	No	No
	60	-53.52	20%	Yes	Yes	No	Yes
	61	-53.67	30%	Yes	Yes	Yes	No
	62	-53.68	30%	Yes	Yes	Yes	Yes
	63	-53.72	10%	Yes	Yes	Yes	No
Inconcl	64	-54.12	30%	Yes	Yes	No	No

Similar results versus classic CMAC SARSA and the recent NEAT+Q

3D Mountain Car

Enabling Grids for E-sciencE

 Performance measure: avg # steps escaping the valley from 1000 random starting states

Rank	Perf.	Elitism	Crossover	Speciation	Complexify	Sparse
1	-157.17	40%	Yes	No	Yes	Yes
2	-165.80	40%	No	No	No	Yes
3	-167.61	30%	No	No	No	No
4	-170.13	10%	No	Yes	Yes	No
5	-174.57	10%	No	No	Yes	Yes
60	-224.72	10%	No	Yes	No	No
61	-228.81	20%	Yes	No	No	No
62	-230.63	10%	Yes	No	Yes	Yes
63	-234.64	40%	No	No	Yes	Yes
64	-238.75	20%	Yes	No	No	Yes

Inconclusive

Single Pole Balancing

Enabling Grids for E-sciencE

Performance measure: # Nets evaluated

Rank	Perf.	Elitism	Crossover	Speciation	Complexify	Sparse
1	186.48	10%	No	No	No	No
2	189.64	10%	No	No	No	Yes
3	195.64	10%	No	Yes	Yes	Yes
4	195.92	20%	Yes	No	No	Yes
5	196.22	10%	No	Yes	No	No
60	249.52	30%	Yes	Yes	Yes	Yes
61	258.88	40%	Yes	Yes	Yes	No
62	261.38	20%	Yes	Yes	No	Yes
63	268.96	20%	Yes	Yes	No	Yes
64	277.74	40%	Yes	Yes	No	Yes

Double Pole Balancing

Enabling Grids for E-sciencE

Performance measure: # Nets evaluated

Rank	Perf.	Elitism	Crossover	Speciation	Complexify	Sparse
1	393.54	10%	Yes	No	Yes	No
2	408.94	10%	Yes	Yes	Yes	No
3	415.26	10%	Yes	No	Yes	Yes
4	423.08	10%	Yes	No	No	Yes
5	424.32	10%	Yes	No	No	No
60	737.40	30%	No	No	Yes	No
61	743.38	40%	No	No	Yes	No
62	752.88	30%	No	Yes	Yes	No
63	782.54	40%	No	No	No	No
64	788.52	40%	No	No	Yes	Yes

• Impoltant parameters. Entrem, erossover

Summarize

- Testbeds very different
- Free lunch theorem holds for parameters
- Results inconclusive besides speciation
 - Actually good
 - Multiple ways of finding a good solution without in many environments without worrying much about specific parameter settings
 - The case the algorithm does not work well (MSO) is mainly due to the restriction of the model itself

Execution period on Grid

- Execution for 1 run on Grid
 - MG ~ 1509.23 sec
 - MSO ~ 977.33 sec
 - Lorentz ~ 2596.66 sec
 - 2DMC ~ 3157.30 sec
 - 3DMC ~ 17347 sec
 - SPB ~ 15.52 sec
 - DPB ~ 183.12 sec
- Total time ~ 27.3 10⁶ ~ 316 days of sequential execution time
- Experimentation period on Grid ~ 60 days
 - allowing for testing, errors, outage, inactivity periods etc.

- Add more testbeds to the grid search
 - Non-markov cases that make pole balancing and mountain car problems more difficult (Implemented)
 - Server Job Scheduling (Implemented)
- More research on speciation and clustering similarity metric
- Increase generations when searching for a suitable network for the MSO testbed

Enabling Grids for E-sciencE

Thank you for your attention!

Fotis Psomopoulos fpsom@issel.ee.auth.gr

Intelligent Systems and Software Engineering Labgroup
Informatics and Telematics Institute
Centre for Research and Technology-Hellas
Thessaloniki, Greece

Intelligent Systems and Software Engineering Labgroup
Electrical and Computer Eng. Dept.
Aristotle University of Thessaloniki
Thessaloniki, Greece

www.eu-egee.org

