

Enabling Grids for E-sciencE

Using the Grid to improve the effectiveness of Learning Classifier Systems through clustering-based initialization

Fani Tzima, Fotis Psomopoulos, and Pericles Mitkas Greece

www.eu-egee.org

Presentation Outline

Enabling Grids for E-sciencE

Introduction

- Learning Classifier Systems (LCS)
- Different LCS flavors

ZCS-DM: Algorithmic description

- Rule representation
- Operation Cycle
- Clustering-based Initialization Component

Experiments and Results

- Experimental Setting for leveraging the Grid Infrastructure
- Qualitative Interpretation of Results
- Statistical Comparison of Results

Conclusions and Future Work

Learning Classifier Systems

- Learning Classifier Systems (LCS) [Holland, 1976] are a machine learning technique designed to work for both single-step and sequential decision problems
- LCS employ a population of classifiers (usually rules in the production system form) gradually evolving through the use of a reinforcement scheme and a GA-based search component

Michigan Vs. Pittsburgh

- Smith's approach, from the University of Pittsburgh → GA applied to a population of LCSs in order to choose the fittest
- "Michigan style" LCSs employ a population of gradually evolving, cooperative classifiers → each classifier encodes a fraction of the problem domain

Different LCS Flavors

Strength-based LCSs (ZCS)

 each classifier contains only one evaluation variable → both an estimation of the accumulated reward brought by its firing and its fitness for the population evolution

Accuracy-based LCSs (XCS)

 decoupling the RL process and the population evolution → fitness function not proportional to the expected reward, but to the accuracy of the latter's prediction

Anticipatory LCSs (ALCS)

- Condition] [Action] → [Effect] classifiers (instead of [Condition] → [Action])
- [Effect] represents the expected effect (next state)

Rule representation

Traditional production form of

IF condition THEN action [Strength] [Fitness]

- Condition comprises predicates of the form
 - <Attribute ∈ SetOfNominalValues | NumericInterval>
- Encoded over the ternary alphabet 0,1,#.
 - The symbol # ("wildcard" or "don't care") allows for generalization.
- Actions are discrete

Both inputs **11** and **10** are matched by the rule condition **1**#

ZCS-DM operation cycle

Enabling Grids for E-sciencE

INITIALIZATION

Initialize population of classifiers R = {R₁,R₂, ...,R_N}

2

PERFORMANCE COMPONENT

- Receive a binary encoding
- Determine an apportate response based on the rules whose condition matches the input
- Produce a classification decision and update rules' fitness values

•

REINFORCEME COMPONENT

In case of scessful classification, apportion a scalar reward R to the system classifiers according to a reinforcement scheme

DISCOVERY COMPO

Change one individuar of the same saffier population by applying GA

4

Method Pros and Cons

Enabling Grids for E-sciencE

- ✓ Intuitive representation
- ✓ Applicable for datasets where there is no prior knowledge of the attributes' probability distributions
- ✓ Production of models storable in a compact form
- √ Fast (post-training) classification of new observations
- ✓ Resulting ruleset is ordered

Grid Resources for Parameter Optimization and Parallel Execution of Experiments

- X Non-deterministic nature of the algorithm + Relatively long training times
 - X multiple experiments to reach statistically sound conclusions
- X Large number of tunable parameters

Clustering-based Initialization

Enabling Grids for E-sciencE

Start the evolutionary process from a non-random set of rules

 Focus on the searchspace optima more effectively and quickly

Clustering algorithms

 Clustering provides a representative set of points (centroids) for a given dataset Design a clustering-based initialization component

- Transform centroids into rules suitable for the initialization phase
- Boost algorithm performance: predictive accuracy + training times

Centroids to Rules Transformation

Enabling Grids for E-sciencE

3 possible condition parts for the case of 2 numeric attributes

Experimental Setting

- Evaluation of 4 versions of the algorithm
 - ClusterInit100
 Clustering-based initialization Full training time (100 iterations)
 - RandomInit100
 Random ruleset initialization Full training time (100 iterations)
 - ClusterInit75
 Clustering-based initialization Reduced training time (75 iterations)
 - RandomInit75
 Random ruleset initialization Reduced training time (75 iterations)

"Vanilla-Setup" Parameters

Parameter	Description		Value
N	Number of rules		400
I	Number of iterations		100/75
detAS 🙍			True
S	lumber of iterations I expresses		100
R	the number of complete passes hrough the training set during the		1000
р	algorithm training phase	ls)	0.5
Т	TO TO COSSITICIS III INOTA		0.1
ρ	GA invocation rate		0.5
С	c Crossover probability m Mutation probability g Generalization probability		0.15
m			0.005
g			0.1
φ	Covering invocation threshold		0.1
NC	NC Number of clusters		10
gc	Clustering generalization rate		0.5

Benchmark Datasets

Dataset	Attributes	Classes	Missing Values	Instances
Balance Scale Weight & Distance	4 nominal	3	0	625
Bupa Liver Disorders	6 numeric	2	0	345
Car Evaluation	6 nominal	4	0	1728
Contraceptive Method Choice	7 nominal + 2 numeric	3	0	1473
Hepatitis	13 nominal + 6 numeric	2	167	155
Pima Indians Diabetes	8 numeric	2	0	768
Connectionist Bench (Sonar)	60 numeric	2	0	208
Tic Tac Toe Endgame	9 nominal	2	0	958
Congressional Voting Records	16 nominal	2	392	435
Breast Cancer Wiskonsin	9 numeric	2	16	699
Wine	13 numeric	3	0	178

- 20 x 10-fold stratified cross-validation runs
- Comparison of the results based on accuracy rate

Comparative analysis of results

Statistical Evaluation of Results

Enabling Grids for E-sciencE

- Statistical procedure [Demsar, 2006] for robustly comparing classifiers across multiple datasets
 - use the Friedman test to establish the significance of the differences between classifier ranks
 - use a post-hoc test to compare classifiers to each other
- In our case, the goal was to compare the performance of all algorithms to each other
 - the Nemenyi test was selected as the appropriate post-hoc test

At $\alpha = 0.05$, the performance of the clustering-based initialization approach with full training times is significantly better than that of all its rivals.

At α = 0.05, the performance of the clustering-based initialization approach with reduced training times is *NOT* significantly different than that of the baseline approach with full training times.

Comparison of Execution Times (1/2)

Enabling Grids for E-sciencE

Execution time (sec) on personal computer (Intel Core 2 Duo, CPU @2.00GHz – 4,00 GB RAM) Vs. the Grid Infrastructure

Grid DAG workflow

Enabling Grids for E-sciencE Parameter Statistical Grid Resources Settings Tests Algorithms to be **Define** Compared concurrent execution strategy **Perform Statistical Tests** and Formulate **Output Parallel Execution of** Merging **Experiments** Results

Comparison of Execution Times (2/2)

Enabling Grids for E-sciencE

Execution time (hrs) on personal computer (Intel Core 2 Duo, CPU @2.00GHz – 4,00 GB RAM) Vs. the Grid Infrastructure

Outlook - Conclusions

- Clustering-based initialization proved to be a useful component
 - achieving the best prediction accuracy (on average) when full training times were employed
 - performing equally well with the baseline approach, even when reduced training times were employed
- The concurrent utilization of Grid resources allowed for an effective and time-efficient way to perform parameter optimization and/or algorithm comparison experiments
- The Grid is the ideal execution environment due to the embarrassingly parallel nature of the problem
 - jobs submitted simultaneously (organized in a DAG workflow)
 - different parameter set → independence of jobs

- Design and implementation of a more in-depth parameter exploration strategy to be evaluated on the Grid infrastructure
 - effect on system performance
- Post-training processing steps
 - consistency and compactness of evolved rulesets
- Evaluation of the algorithm as an on-line data-mining tool for real-world domains (such as urban Air Quality)
 - the nature of the algorithm and the capability of LCS to tackle multi-step decision problems are encouraging

Enabling Grids for E-sciencE

Thank you for your attention!

Fotis Psomopoulos fpsom@issel.ee.auth.gr

Intelligent Systems and Software Engineering Labgroup
Informatics and Telematics Institute
Centre for Research and Technology-Hellas
Thessaloniki, Greece

Intelligent Systems and Software Engineering Labgroup
Electrical and Computer Eng. Dept.
Aristotle University of Thessaloniki
Thessaloniki, Greece

www.eu-egee.org

Centroids to Rules Transformation

```
START
for k = 1 to numberOfAttributes do
    if (Math.random() <= GENERALIZATION RATE) then</pre>
        Switch activation bit of condition k off
    else
        Switch activation bit of condition k on
    end if
    == NOMINAL ATTRIBUTES ==
    if attribute, is nominal then
        SetOfValues:=Ø
        for all possible values of attribute,
            if (Math.random() <= 0.5) then</pre>
                SetOfValues := SetOfValues ∪ currentValue
            end if
        end for
        SetOfValues := SetOfValues U centroid.values[k]
        Create condition k as attributek & SetOfValues
    == NUMERIC ATTRIBUTES ==
    else
        low value = centroid.minValue
        high value = centroid.maxValue
        Create condition k as attribute, e flow value, high value!
    end if
   Add condition k to the RuleConditionPart
end for
END
```

- Non-parametric statistical test for evaluating the differences between more than two related sample means
 - Performances of k classifiers across N target datasets
 (average ranks)

 $\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_j R_j^2 - \frac{k(k+1)^2}{4} \right]$

R_i: average rank of j-th algorithm on i-th dataset

Null hypothesis (all classifiers perform the same and any observed differences are merely random) rejected if
 F_E > F_{critical} (k-1,(k-1)*(N-1))

$$F_F = \frac{(N-1)\chi_F^2}{N(k-1) - \chi_F^2}$$

statistic distributed according to the F-distribution with k-1 and $(k-1)^*(N-1)$ degrees of freedom

Nemenyi Post-Hoc Test

- Evaluates the relative performance of all classifiers to each other
- The performance of two algorithms is significantly different if the corresponding average ranks differ by at least the critical difference CD

$$CD = q_{\alpha} \sqrt{k(k+1)/6N}$$

critical values q_a are those of the Studentized range statistic divided by $\sqrt{2}$ with a significance level of α and k degrees of freedom