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Learning Classifier Systems

• Learning Classifier Systems (LCS) [Holland, 1976] are a 
machine learning technique designed to work for both 
single-step and sequential decision problems

• LCS employ a population of classifiers (usually rules in 
the production system form) gradually evolving through 
the use of a reinforcement scheme and a GA-based 
search component
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Learning classifier systems, originally proposed by Holland, belong to a class of machine learning systems designed to work for both single-step and sequential decision problems. 
They employ a population of classifiers, that are usually rules in the traditional production system form and gradually evolve through the use of a reinforcement scheme and a genetic algorithm based search component.
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Michigan Vs. Pittsburgh

• Smith’s approach, from the University of Pittsburgh àààà
GA applied to a population of LCSs in order to choose 
the fittest

• “Michigan style” LCSs employ a population of gradually 
evolving, cooperative classifiers àààà each classifier 
encodes a fraction of the problem domain
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The early period of LCS research was structured by the controversy between the so-called “Pittsburgh” and “Michigan” approaches. 
In Smith’s approach from the University of Pittsburgh, the only adaptive process was a GA applied to a population of LCSs in order to choose the fittest for a given problem.
By contrast, in the systems from Holland and his PhD students, at the University of Michigan, the GA was combined since the very beginning with an RL mechanism and was applied within a single LCS with a population of cooperative classifiers, each encoding a fraction of the problem.
Though, the Pittsburgh approach is again gaining in popularity, the Michigan approach is the standard for the LCS framework and is also used by the algorithm employed in our current work.
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Different LCS Flavors

• Strength-based LCSs (ZCS)
– each classifier contains only one evaluation variable à both an 

estimation of the accumulated reward brought by its firing and its 
fitness for the population evolution

• Accuracy-based LCSs (XCS)
– decoupling the RL process and the population evolution à fitness 

function not proportional to the expected reward, but to the 
accuracy of the latter’s prediction

• Anticipatory LCSs (ALCS)
– [Condition] [Action] à [Effect] classifiers (instead of 

[Condition]à[Action]) 
– [Effect] represents the expected effect (next state)
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Along the history of LCS research, 3 families of systems have emerged: 
 strength-based LCSs
 accuracy-based LCSs and
 anticipatory LCSs (ALCSs).
Despite the ongoing interest and impressive results applying accuracy-based LCS to data mining problems, the present work departs from this popular approach and takes a step forward, aiming to uncover the potential of strength-based LCS in classification tasks. We have named our customized ZCS implementation ZCS-DM.
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Rule representation

• Traditional production form of
IF condition THEN action [Strength]   [Fitness]

• Condition comprises predicates of the form
<Attribute ∈∈∈∈ SetOfNominalValues | NumericInterval>

• Encoded over the ternary alphabet 0,1,#.
– The symbol # (“wildcard” or “don’t care”) allows for 

generalization. 

• Actions are discrete 
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Both inputs 11 and 
10 are matched by 

the rule condition 1#

Following the terminology of LCS, in the following we will use the terms rule and classifier interchangeably.
Rules (classifiers) are represented in the traditional production form of “IF condition THEN action” and are usually encoded over the ternary alphabet 0,1,#.
The symbol # (usually termed as a “wildcard” or a “don’t care”) allows for generalization in the rule condition part, such that both inputs 11 and 10 are matched by the rule condition1#. 
No generalization occurs in the action part, with actions being discrete and usually integer-valued. 
Associated with each classifier, there is a scalar strength value expressing its expected reward, as well as a fitness value expressing its probability to be selected for reproduction by the GA. 
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ZCS-DM operation cycle

Using the Grid to improve LCS effectiveness 7

•4

1
PERFORMANCE COMPONENT

• Receive a binary encoded input vector Vt
• Determine an appropriate response based on the rules 

whose condition matches the input
• Produce a classification decision  and update rules’ fitness values

REINFORCEMENT COMPONENT

• In case of successful classification, apportion  a scalar reward 
R to the system classifiers according to a reinforcement scheme 3

DISCOVERY COMPONENT

• Change one individual of the classifier population 
by applying GA4

2

INITIALIZATION

• Initialize population of classifiers R = {R1,R2, ...,RN}

Following the initialization of the ruleset, the operation cycle of ZCS includes the following steps:
 A binary encoded input vector Vt is received from the environment. The system determines an appropriate response based on a rule (or a set of rules) whose condition matches the input, and produces a classification decision and updates the ruleset’s fitness values. 
 Successful classification of an instance is associated with a scalar reward R apportioned to the system classifiers according to a reinforcement scheme.
 Next, the GA-based discovery component is activated, changing one individual of the rule population
Thus, at each discrete time-step, the system follows a cycle of performance, reinforcement and discovery component activation. 
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Method Pros and Cons

ü Intuitive representation 
üApplicable for datasets where there is no prior 

knowledge of the attributes’ probability distributions
üProduction of models storable in a compact form
üFast (post-training) classification of new observations
üResulting ruleset is ordered

X Non-deterministic nature of the algorithm + Relatively 
long training times
X multiple experiments to reach statistically sound conclusions

X Large number of tunable parameters 
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Grid Resources for   Parameter Optimization 
and Parallel Execution of Experiments

Given the fact that ZCS-DM is used to induce classification rules, it presents some clear advantages over other black-box classification approaches. These advantages include:
i) The intuitive representation that allows for easy interpretation of the resulting classification model;
ii) A nonparametric nature that is especially suited for exploring datasets where there is no prior knowledge of the attributes’ probability distributions;
iii) The fact that the final models are storable in a compact form; 
iv) The fast classification of new observations, once the model has been constructed, and finally 
v) The ability to evolve ordered rulesets that may be used to produce both categorical decisions and outcome possibilities.

However, genetic algorithm-based search is an arguably slow and computationally expensive search method and, thus, ZCS-DM requires relatively longer training times than other rule induction algorithms. This fact, combined with the non-deterministic nature of the algorithm and the relatively large number of tunable parameters, create the need for multiple experiments to optimize the parameter space and reach statistically sound conclusions. 

Towards this end, the optimization of the ZCS-DM algorithm using Grid resources may provide researchers with an invaluable tool for performing data-mining tasks, and end-users with an efficient application for enhancing decision making tasks.
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Clustering-based Initialization

Clustering 
algorithms

Start the 
evolutionary 
process from 

a non-
random set 

of rules
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Design a 
clustering-based 

initialization 
component

• Transform centroids into rules 
suitable for the initialization phase

• Boost algorithm performance: 
predictive accuracy + training times

• Focus on the search-
space optima more 
effectively and quickly

• Clustering provides a 
representative set of 
points (centroids) for a 
given dataset

Exactly in this direction of boosting predictive accuracy and reducing training times, we have developed the Clustering-based initialization Component presented in the current study.

Clustering-based initialization is based on the idea that starting from a non-random set of rules, may “help” the evolutionary process focus on the search-space optima (the optimal set of rules for the given classification task in our case) more effectively and quickly. Intuitively, this non-random set of rules should be based on the given dataset and provide an effective “summary” of the knowledge available in it. 

Our solution tries to leverage the potential of clustering algorithms to provide a representative set of points (centroids) for a given dataset. 

Given this set of centroids, we try to transform them into rules suitable for the initialization of our algorithm, with the ultimate goal of boosting its performance not only in terms of predictive accuracy, but also in terms of training times –through the reduction of the evolutionary process’ execution time. 
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• 3 possible condition parts for the case of 2 numeric attributes

Centroids to Rules Transformation
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Max Value of Attribute2 for 
Instances of Cluster X

Min Value of Attribute2 for 
Instances of Cluster X

Max Value of Attribute1 for 
Instances of Cluster X

Min Value of Attribute1 for 
Instances of Cluster X

Centroid of 
Cluster X attribute1 ∈∈∈∈ [low1, high1]

attribute2 ∈∈∈∈ [low2, high2] 

AND

low1 high1

low2

high2

Cluster X 
Majority Class

Once the pre-training initial clustering of the target dataset is complete, transforming centroid attribute values into conditions for the corresponding rules is based on the “covering” process depicted here. This is a very simple example for a dataset with only 2 numeric attributes. 

Given the centroid of a discovered cluster and the corresponding limit values for each of the attributes for this cluster, there are 3 possible condition parts. The one involving both attributes, and two more that “generalize” on each of the available attributes. The generalization process is stochastic and controlled by a parameter the defines the probability of generalizing on a single attribute.

Regarding, the decision part of the created rule, the user can decide whether a single rule per cluster will be created (for the cluster’s majority class, as in our example) or whether multiple rules will be instantiated for each cluster, one for each possible class of the instances assigned to it. In the latter case, each created rule’s strength is assigned proportionally to the corresponding class’s prevalence in the cluster.
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Experimental Setting
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• Evaluation of 4 versions of the algorithm
– ClusterInit100

Clustering-based initialization – Full training time (100 iterations)
– RandomInit100

Random ruleset initialization – Full training time (100 iterations)
– ClusterInit75

Clustering-based initialization – Reduced training time (75 iterations)
– RandomInit75

Random ruleset initialization – Reduced training time (75 iterations)

Our experimental investigation involves a comparative analysis of the clustering-based initialization component’s performance against the baseline approach for full and reduced training times.

The comparison between the first two versions of the algorithm will reveal the potential of the clustering component to boost ZCS-DM’s predictive accuracy when full training times are employed, 

while the comparison between the latter two versions will test what the situation is for reduced training times. 

Finally, the comparison between the middle two versions, will reveal whether acceptable predictive accuracy may be achieved with clustering-based initialization, even with reduced training times.
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“Vanilla-Setup” Parameters
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Parameter Description Value

N Number of rules 400

I Number of iterations 100/75

detAS Deterministic action selection True

S Initial rule strength 100

R Correct classification reward 1000

p Penalty (except for cost-sensitive models) 0.5

τ Tax for  classifiers in NOTA 0.1

ρ GA invocation rate 0.5

c Crossover probability 0.15

m Mutation probability 0.005

g Generalization probability 0.1

φ Covering invocation threshold 0.1

NC Number of clusters 10

gc Clustering generalization rate 0.5

Number of iterations I expresses 
the number of complete passes 

through the training set during the 
algorithm training phase

This table depicts the parameter values used through all reported experiments. 
The only parameter we are interested in now is the number of iterations I, which expresses the number of complete passes through the training set during the algorithm training phase. With a value of I=100 and a dataset of 200 instances, for example, the system would be presented with each training example 100 times and, thus, would perform 20000 cycles of performance, reinforcement and discovery component activation before arriving to the final ruleset to be used for testing.

As far as parameter exploration is concerned, inspecting the above table, one can easily observe that all available (tunable) parameters were kept constant, in order to ensure a fair comparison between the algorithm versions.
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Benchmark Datasets
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• 20 x 10-fold stratified cross-validation runs
• Comparison of the results based on accuracy rate

Dataset Attributes Classes Missing 
Values

Instances

Balance Scale Weight & 
Distance

4 nominal 3 0 625

Bupa Liver Disorders 6 numeric 2 0 345

Car Evaluation 6 nominal 4 0 1728

Contraceptive Method Choice 7 nominal + 2 numeric 3 0 1473

Hepatitis 13 nominal + 6 numeric 2 167 155

Pima Indians Diabetes 8 numeric 2 0 768

Connectionist Bench (Sonar) 60 numeric 2 0 208

Tic Tac Toe Endgame 9 nominal 2 0 958
Congressional Voting 

Records
16 nominal 2 392 435

Breast Cancer Wiskonsin 9 numeric 2 16 699

Wine 13 numeric 3 0 178

The benchmark datasets employed in this work are listed in this table and they are all readily available from the UCI repository. The selected datasets are all from real-world domains and, arguably, present a diverse challenge for the algorithms under comparison, since they comprise a mixture of nominal and numeric attributes, a wide range of attributes numbers (4-60), several dataset sizes (155-1728 instances) and some cases of missing values.

The 4 studied versions of ZCS-DM were applied to the eleven benchmark datasets, using 10-fold stratified cross-validation in 20 runs. Comparison of the results is based on the accuracy rate of each of the algorithms.
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Comparative analysis of results
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ClusterInit100

1.32
ClusterInit75

2.64

RandomInit100

2.68

RandomInit75

3.36

1

2

3

4


This diagram schematically presents the corresponding ranking of the four algorithms (vertical axis) against the twelve benchmark datasets (horizontal axis). Based on the measured accuracy results, the clustering-initialization approach clearly dominates the other three, with best results on eight out of the eleven datasets. 
The average rank (the values in the balloons) also provides a clear indication of the studied algorithms’ relative performance, with the clustering-initialization approach receiving an average rank of 1.29 and 2.64 for full and reduced training times respectively.
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Statistical Evaluation of Results• Statistical procedure [Demsar, 2006] for robustly 
comparing classifiers across multiple datasets
– use the Friedman test to establish the significance of the 

differences between classifier ranks 
– use a post-hoc test to compare classifiers to each other

• In our case, the goal was to compare the performance 
of all algorithms to each other
– the Nemenyi test was selected as the appropriate post-hoc test

Statistical Evaluation of Results
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At  α = 0.05, the performance of the clustering-based 
initialization approach with full training times is 

significantly better than that of all its rivals.

At  α = 0.05, the performance of the clustering-based initialization 
approach with reduced training times is NOT significantly different 

than that of the baseline approach with full training times.

In order to evaluate the statistical significance of the measured differences in algorithm ranks, we have used the procedure suggested by Demsar for robustly comparing classifiers across multiple datasets. This procedure involves the use of the Friedman test to establish the significance of the differences between classifier ranks and, potentially, a post-hoc test to compare the algorithms to each other
In our case, the goal was to compare the performance of all algorithm versions to each other. Thus, Nemenyi test was selected as the appropriate post-hoc test.

Our analysis, reveals that at a = 0.05, the performance of the clustering-based initialization approach with full training times is significantly better than that of all its rivals.

Moreover, at  a = 0.05, the performance of the clustering-based initialization approach with reduced training times is NOT significantly different from that of the baseline approach with full training times.
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Comparison of Execution Times (1/2)

• Execution time (sec) on personal computer (Intel Core 2 Duo, CPU 
@2.00GHz – 4,00 GB RAM) Vs. the Grid Infrastructure
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Single10-fold Cross-Validation Run

25% improvement 
compared to 
PC times

Ta ble einai sto PC, ta roz sto Grid gia 1 10-fold experiment
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Grid DAG workflow
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Define 
concurrent 
execution 
strategy

Merging 
of 

Results

…

… Parallel 
Execution of 
Experiments

Perform 
Statistical Tests 
and Formulate 

Output

Statistical 
Tests

Parameter 
Settings Algorithms 

to be 
Compared

Grid Resources 
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Comparison of Execution Times (2/2)

• Execution time (hrs) on personal computer (Intel Core 2 Duo, CPU 
@2.00GHz – 4,00 GB RAM) Vs. the Grid Infrastructure
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20 x 10-fold Cross-Validation Runs
+ Aggregate Statistical Tests

Scripted parallel 
execution on the Grid + 
automatic aggregation 

of results 
is 27 times faster than 
sequential execution 

on PC 

Mple sto PC 20 10-fold CVs seiriaka
Roz sto grid 20 10-fold CVs parallila kai sto telos automatic aggregation
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Conclusions• Clustering-based initialization proved to be a useful 
component 
– achieving the best prediction accuracy (on average) when full 

training times were employed
– performing equally well with the baseline approach, even 

when reduced training times were employed

• The concurrent utilization of Grid resources allowed for 
an effective and time-efficient way to perform parameter 
optimization and/or algorithm comparison experiments

• The Grid is the ideal execution environment due to the 
embarrassingly parallel nature of the problem

– jobs submitted simultaneously (organized in a DAG workflow )
– different parameter set à independence of jobs

Outlook - Conclusions
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Future Work
• Design and implementation of a more in-depth 

parameter exploration strategy to be evaluated on the 
Grid infrastructure
– effect on system performance

• Post-training processing steps
– consistency and compactness of evolved rulesets

• Evaluation of the algorithm as an on-line data-mining 
tool for real-world domains (such as urban Air Quality)
– the nature of the algorithm and the capability of LCS to tackle 

multi-step decision problems are encouraging 

Future Work
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Of course, several issues deserve further investigation in order to obtain maximal results. A first step toward this direction is the design and implementation of a more in-depth exploration strategy for the algorithm parameters and their effect on system performance. 
Further, we believe post-training processing steps to ensure the consistency and minimality of the evolved rulesets to be very important.
+++
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Centroids to Rules Transformation
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Friedman Test• Non-parametric statistical test for evaluating the 
differences between more than two related sample 
means 
– Performances of k classifiers across N target datasets

(average ranks)

– Null hypothesis (all classifiers perform the same and any 
observed differences are merely random) rejected if  
FF > Fcritical (k-1,(k-1)*(N-1))

statistic distributed according to the 
F-distribution with k−1 and (k−1)*(N−1) 
degrees of freedom
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Friedman Test

Rj: average rank of j-th algorithm on i-th dataset
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Holm step-down procedure

• Evaluates the relative performance of all classifiers 
to each other

• The performance of two algorithms is significantly 
different if the corresponding average ranks differ by 
at least the critical difference CD 
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Nemenyi Post-Hoc Test

critical values qa are those of the Studentized 
range statistic divided by       with a significance 
level of α and k degrees of freedom


