

NDGF approach to serve the non-LHC communities needs: Material Science VO

Ivan Degtyarenko, D.Sc. (Tech)

NDGF

CSC – IT Center for Scientific Computing Espoo, Finland

EGEE UF 2010, Uppsala Slide 1 / 14

Because of LHC

the European Grid exists because of LHC, it has been designed in order to serve LHC needs

NDGF: BIO and CO2 CPU time consumption < 1%

EGEE: of 190 active VOs, 42 are HEP and consume

over 90% of the CPU and storage resources

a lot of data and short time serial jobs

Source: NDGF 2009 Quaterly reports, EGEE accounting portal

Non-LHC communities

Who are them? What are they running? Where? What are their CPU and storage resource needs?

Why the vast majority of them do not care about grid interfaces?

Material Science VO

The joint project between NDGF and CSC on extending the Finnish Material Science VO to a Nordic countries level.

- support of the non-LHC communities
- not limited to any particular field of science
- become a strong actor at the European scale

Initial project goals

extend the VO resources, user experience and collaboration by attracting new computer centers and labs within Nordics

easily expandable / shrinkable system based on the solid statistical numbers and users preferences

- a number of popular applications support over all sites
- MPI support and impact on ARC development towards MPI environment support

Who?

Geographical Region / Performance November 2009

Segments / Performance November 2009

Who are them?

computational scientists at universities, polytechnics and research institutions

by fields of science: bio-sciences
(including drug design and structural
analyzes), physics and chemistry (and
corresponding nanosciences),
astrophysics, fluid dynamics,
economics, medical, environmental,
social and earth sciences, mathematics
and computer science, language
research ... others where scientific
computing has influenced

What?

NUMBER of	JOBS	WALLTIME (1	nours)
total	6213569	total	48920078
serial	4753250 (76.50 %)	serial	9535418 (19.49%)
parallel	1460319 (23.50%)	parallel	39384660 (80.51 %)
lam	56640 (3.88% of	lam	2616030 (6.64% of
pe jobs)		pe jobs)	
mpich	888456 (60.84%)	mpich	11557678 (29.35%)
mpich2	51152 (3.50%)	mpich2	889372 (2.26%)
openmpi	349598 (23.94%)	openmpi	11481871 (29.15%)
mvapich	79519 (5.45%)	mvapich	12234506 (31.06%)
threaded	31385 (2.15%)	threaded	100057 (0.25%)

EGEE UF 2010, Uppsala Slide 7 / 14

Statistics: Finnish M-grid clusters

Use of CPU cores in parallel

Walltime distribution for parallel jobs

Walltime distribution for serial jobs

CSC

EGEE UF 2010, Uppsala Slide 8 / 14

Statistics: cluster at CSC

Number of jobs distribution

total jobs number run on 1, 2, 4 ... 512 CPU cores

CPU time consumtion distribution

total CPU time consumed by 1, 2, 4 ... 512 CPU core jobs

parallel jobs walltime distribution

serial jobs walltime distribution job length statistics

EGEE UF 2010, Uppsala Slide 9 / 14

Runtime needs summary

majority of the jobs are:

no longer than 24 hours

serial (in terms of job number)

parallel (in terms of CPU time)

EGEE UF 2010, Uppsala Slide 10 / 14

Type of applications

```
a.out (70%, another 30% are pre-installed apps)
```

```
Top list of pre-installed apps (Finland): GPAW, NAMD, Gromacs, TURBOMOLE, Gaussian, CPMD, ADF, BLAST, Elmer, Molpro, Dmol, NWChem
```

(Norway): WRF, VASP, ROMS, CCSM, EnKF, Dalton, Gaussian, ADF

Others?

Licensing: an obstacle or opportunity?

EGEE UF 2010, Uppsala Slide 11 / 14

MPI must be taken seriously

ability to run and compile MPI easily OpenMPI: the default recommended flavor ability to request the varying number of slots ability to request logical CPUs within one physical CPU only, or one WN available memory per logical CPU interconnecting choice

Others (?)

Canonical use case

Grid type of job

compile/install app (optional), prepare the application input files, submit the job, fetch the results, analyze&visualize

canonical use case: Gromacs

description: classical molecular dynamics package, widely used by biophysicists and other bio-scientists

input: a few files, ~megabytes

output: no limits, typically a few gigabytes

execution: may take a few hours or weeks, in serial,

parallel (typically), as an array jobs

analyzes&visualization: VMD, PyMol, gOpenMol

csc

Slide 13 / 14

General observations

batch system users are the target auditory

make sure they know about grid interface opportunity

the community of computational scientists must be a driven force, look for the critical mass

the concrete user, and not a user

HPC and not HTC

