

Workflows Description, Enactment and Monitoring in SAGA

Ashiq Anjum, UWE Bristol Shantenu Jha, LSU

neuGrid

- Recent progress in neuroimaging techniques and data formats has led to an explosive growth in neuroimaging data
- Analysis of this data can facilitate research in neuro-degenerative diseases.

http://www.neugrid.eu

neuGRID

Services in neuGRID

Generic Medical Services

Data Challenge Facts & Figures

Expected Results

Experiment duration	2 Weeks	
Experiment duration or	> 5 Years	
Analyzed data	Patients MR Scans Voxels	715 6'235 2 X 10(exp13)
Hours of total pipeline	6'300	
Total mining operations	286'810	
Operations throughput per hour		853
Max # of processing co	# of processing cores in parallel 18	
Number of countries in	4	
Volume of data produc	1 TB	

A Neuroimaging Workflow

Pipeline Service: Generalisation

Pipeline Service: Overview

- Designed to provide the required functionality to author, transform and plan workflows
- And orchestrate and facilitate the retrieval of analysis data and intermediary output for Provenance capture.
- The Pipeline Service specifies workflows and retrieves the output via the Glueing Service.

Workflow Planning Approaches

- Approaches for workflow planning include:
 - Data-based Methods: Data elimination
 - Task-based Approaches: Task Clustering
 - Experimental evaluations concentrate on automated task clustering.
- Two types of clustering
 - Automated Horizontal Clustering
 - Collapse Factor Based
 - Bundle Factor Based
 - User defined clustering

Total Runtime: 1147 secs

Total Runtime(without optimisation): 2788 secs Total Runtime (with optimisation): 1763 secs **Reduction in Runtime: 36.7%**

55

Enactment via Glueing Service

- Uses SAGA to communicate with an underlying infrastructure.
- Able to cater for multiple infrastructures → interoperability.
- Enables flow of data and control to and from the infrastructure (here gLite) for Provenance.

Glueing Service

- Provides file management; workflow submission & monitoring; and provenance retrieval functionality in a generic manner.
- Builds upon SAGA to provide a middleware agnostic way for services and users to interact with the Grid.
- The Glueing Service provides a SOAP wrapper over the OGF SAGA.
- In order to use the Glueing Service in a SAGA compliant manner we have developed the UWESOAP Adaptor.

SAGA: In a thousand words...

digedag

- digedag prototype implementation of a SAGAbased workflow package, with:
 - an API for programatically expressing workflows
 - a parser for (abstract or concrete) workflow descriptions
 - an (in-time workflow) planner
 - a workflow enactor (using the SAGA engine)
 - this will eventually be separated from digedag, but will continue to use SAGA
- Can accept mDAG output, or Pegasus output
- Can move back and forth between abstract and concrete DAG

DAG-based Workflow Applications: Extensibility Approach

Digedag: SAGA Workflow Package

- Development Phase: Creation & management of nodes and edges of a DAG and parts of the DAG
- Planning Phase: Digedag planner is fired when creating and executing C-DAG – thus responding to dynamic changes instantly
 - When adding/removing nodes/edges
 - Node/edge firing succeeds/fails, or edge transfer fails/succeeds
- Mixed Planning and Execution Phase
 - Having the full A-DAG, current C-DAG and live Information
- Execution Phase: SAGA-based Enactor designed to support explicit dynamic execution
 - SAGA-based DAG enactor, which changes the Concrete-DAG on the fly, thus remapping workflow elements (DAG nodes).

DAG-based Applications

Extensibility and Higher-level API

Application Development Phase

SAGA-based DAG Execution Preserving Performance

#	resources	middleware	walltime	std-dev.	diff to local
1	1	f	68.7 s	9.4 s	
2	1	S	131.3 s	8.7 s	62.6 s
3	1	С	155.0 s	16.6 s	86.3 s
4	1	f, s	89.8 s	5.7 s	21.1 s
5	1	f, c	117.7 s	17.7 s	49.0 s
6	1	s, c	133.5 s	32.5 s	64.8 s
7	1	f, s, c	144.8 s	18.3 s	76.1 s
8	q	S	491.6 s	50.6 s	422.9 s
9	e	a	354.2 s	23.3 s	285.5 s
10	e, q	s, a	363.6 s	60.9 s	294.0 s
11	l, q, e	f, s, a	409.6 s	60.9 s	340.9 s
12	1	d	$168.8 s^6$	5.3 s	100.1 s
11	P	d	309.7 s	41.5 s	241.0 s

TABLE II: Execution measurements

resources: l=local, p=Purdue, q=Queen Bee, e=aws/EC2 middleware: f=fork/SAGA, s=ssh/SAGA, a=aws/SAGA,

c=Condor/SAGA,d=Condor/DAGMan, p=Pegasus

Glueing Service: Current Status

- V1.0 Available, integrated with LORIS & operable with gLite
- Secure authentication with the infrastructure is implemented.
- The glueing service software
 - Can be compiled from source
 - Can be deployed using binaries
 - Can be tested using preconfigured VM
- UWE SOAP Adaptor
 - Supports job submission, monitoring and file transfers
 - Supports file reading, writing, listing
 - Translates SAGA API calls written by an end user to SOAP calls
 - Supports SOAP attachments using Java activation framework

Future Work

Glueing Service (Future)

