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Fundamental Physics Questions

g5 + Why do particles have mass?
"‘ — Newton could not explain it - and neither can we...
 What is 96% of the Universe made of?
— We only observe 4% of it!
 Why is there no antimatter left in the Universe?
— Nature should be symmetrical
 What was matter like during the first second of the
Universe, right after the "Big Bang"?

— A journey towards the beginning of the Universe gives us
deeper insight

The Large Hadron Collider (LHC), allows us to look at microscopic big bangs
to understand the fundamental laws of nature
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e fundamental research and discoveries
e technological innovation

e training and education

bringing the world together

1954 Rebuilding Europe
First meeting of the
CERN Council

o pit ke, S

2010 Global Collaboration
The Large Hadron Collider involves
over 100 countries

1980 East meets West
Visit of a delegation from Beijing
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CERN’s Tools

Q . * The world’s most powerful accelerator: LHC

o — A 27 km long tunnel filled with high-tech instruments
oy — Equipped with thousands of superconducting magnets
1. — Accelerates particles to energies never before obtained

— Produces particle collisions creating microscopic “big bangs”

* Very large sophisticated detectors

— Four experiments each the size of a cathedral
— Hundred million measurement channels each
— Data acquisition systems treating Petabytes per second

* Significant computing to distribute and analyse the data

- AI Cgmputing Grid linking ~200 computer centres around the
globe

— Sufficient computing power and storage to handle 15 Petabytes
perlyear, making them available to thousands of physicists for
analysis

Global collaborations essential at all stages

Worldwide LHC Computing Grid
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IP4-ATLAS (Horizontal)

ATLAS ALICE

Cazso | oas | oo | orr

Fill: 1005 E: 3300 GeV 30-03-2010 143702

PROTON PHYSICS: STABLE BEAMS

3500 Gev [ERIE:3NE 1.54e+10 ( 1.33e+10

Comments 30-03-2010 14:35:55 BIS status and SMP flags
Mare than 1h of stable beams! Link Status of Beam Permits
Global Beam Permit
Satup Baam
Beam Presence
Moveable Devices Allowed In

Mo black holes

High - Energy Collisions at 7 TeV
LHC @ CERN
30.03.2010




From this (October 2008) ...

Collateral damage: magnet displacements

Collateral damage:
ground supports
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QATLAS
A EXPERIMENT

2009-11-23, 14:22 CET
Run 148541, Event 171897

hitp://atias web.cem.ch/Atlas/public/EVTDISPLAY /events himi
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ATLAS s
EXPERIMENT RS ! M =53Gev

% Run Number: 152221, Event Number: 383185
Date: 2010-04-01 00:31:22 CEST

W-pv candidate in
__ 7TeVcollisions

/ Run/Evenl: 132440 / 2737321
—_~"\| Lumi section: 124

a0
CMS Experiment at LHC, CERN
(1\‘5/ Data recorded: Tue Mar 30 12:58:48 2010 CEST
T—— | OrbitiCrossing: 32323764 / 1

High - Energy Collisions at 7 TeV
LHC @ CERN
30.03.2010




CMS?

ATLAS superimposed to
the 5 floors of building 40

WAR D
LORMETER

Tolalwelght  : 12,300t
Ovemlldlameter: 15.00m

ATLAS CMS

el sl QRS % Qverall weight (tons) 7000 12500
| Diameter 22 m 15m
Length 46 m 22m
Solenoid field 2T
14th April 2010
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ATLAS is the product of =20 years sustained activity by a worldwide scientific community.



ATLAS as an example of scale of a collaboration


ATLAS is the product of >20 years sustained activity by a worldwide scientific community.

; ~2900 scientists

N (incl. ~1000 students)
! 172 institutions
37 countries

experiments

Collabonration



Collisions at the LHC: summary

7x10"2 eV Beam Energy
10%* cm2s'  Luminosity
2835 Bunches/Beam
10 Protons/Bunch
&:{:—;::_< _;;_.t B =
7 TeV Proton Proton
@ N Bunch Crossing 4107 Hz COIIIdmg beams
Mg " Proton Collisions  10°Hz
%)
Parton Collisions p+t
/'H'
o el A
New Particle Production 10 Hz Lot ¢— 2y et
(Higgs, SUSY, ....) z

_ uce,
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Selection of 1 event in, 10,000,000,000,000
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Note : ?s  limited by needed bending power. 
LHC : 1232 superconducting dipoles with       B = 8.4 T  working at 1.9 Kelvin   (the largest cryogenic system in the world)

Will be installed in the existing LEP tunnel
need B = 8.4 T dipole magnets (limits energy)

Ecm = 14 TeV
~7 times higher than present highest energy machine (Tevatron: 2 TeV)

Under construction: pilot run in June 2007   L ~ 10 32cm-2s-1

2008   L ~ 2x 10 33 cm-2s-1

Design luminosity: L = 1034 cm-2s-1
~100 times larger than present machines (Tevatron: 1032 cm-2s-1)
Energy and luminosity gives LHC an accessible energy range extended by a factor of 10 compared to the Tevatron.
Search for:
new massive particles up to m ~ 5 TeV
rare processes with small cross-sections
One year at L = 1034 cm-2s-1   ?  ? Ldt ? 100 fb-1





pp collisions at 14 TeV at 1034 cm2s”

Vg A very difficult environment ...

Reconstructed tracks

= rrlow to extract this: with pt > 25 GeV

1%1} - 4 muons

From thig:

With:

20 proton-proton
collisions overlap

And this repeats

every 25 ns... [
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The LHC Computing Challenge

Signal/Noise: 1013 (10~ offline)
Data volume

* High rate * large number of
channels * 4 experiments

=>» 15 PetaBytes of new data each
year

Compute power

e Event complexity * Nb. events *

thousands users
=» 200 k of (today's) fastest CPUs
=> 45 PB of disk storage

Worldwide analysis & funding

e Computing funding locally in major

regions & countries
e Efficient analysis everywhere

=>» GRID technology
14th April 2010
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The challenge faced by LHC computing is one primarily of data volume and data management.  The scale and complexity of the detectors – the large number of “pixels” if one can envisage them as huge digital cameras, and the high rate of collisions – some 600 million per second – means that we will need to store around 15 Petabytes of new data each year.  This is equivalent to about 3 million standard DVDs.

In order to process this volume of data requires large numbers of processors: about 100,000 processor cores are available in WLCG today, and this need will grow over the coming years, as will the 45 PB of disk currently required for data storage and analysis.

This can only be achieved through a worldwide effort, with locally funded resources in each country being brought together into a virtual computing cloud through the use of grid technology.


WLCG - what and why?

;i * Adistributed computing infrastructure to provide the
- production and analysis environments for the LHC
uldl  experiments

e Managed and operated by a worldwide collaboration
between the experiments and the participating computer
centres

 The resources are distributed — for funding and sociological
reasons

e Qur task is to make use of the resources available to us — no
matter where they are located

— We know it would be simpler to put all the resourcesin 1 or 2
large centres

— This is not an option ... today

Worldwide LHC Computing Grid
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.~ (W)LCG - Project and Collaboration

_— — Phase | — 2002-05 - Development & planning;
oy prototypes

. * End of this phase the computing Technical Design Reports were delivered (1 for
LCG and 1 per experlmentg)

— Phase Il = 2006-2008 — Deployment & commissioning
of the initial services
* Program of data and service challenges

 During Phase Il, the WLCG Collaboration was set
up as the mechanism for the longer term:

— Via an MoU —signatories are CERN and the funding
agencies

— Sets out conditions and requirements for Tier O, Tier 1,
Tier 2 services, reliabilities etc (“SLA”)

— Specifies resource contributions — 3 year outlook

Worldwide LHC Computing Grid

E¥ WLCGG
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Tier 0; 11 Tier 1s; 61 Tier 2 federations |
s (121 Tier 2 sites)
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Australia, Austria, Belgium, Brazil, Canada, China, Czech Rep, ;
Denmark, Estonia, Finland, France, Germany, Hungary, Italy, India, &
Israel, Japan, Rep. Korea, Netherlands, Norway, Pakistan, Poland, o0 T
Portugal, Romania, Russia, Slovenia, Spain, Sweden, Switzerland,
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Today WLCG is:

@& * Runningincreasingly high .. =
= workloads:

W — Jobs in excess of 650k /
A day; Anticipate millions /

No. Jobs/month

_ day soon
— CPU equiv. “100k cores — TTITTTITIITITI T Y I T I L T I TIT T IT T ITIT
* Workloads are: T Guhoursimonthforwice sl A
00000000 8 cms 100k CPU-days/day

— Real data processing
— Simulations
— Analysis — more and more

* Data transfers at = - cwis:no
. o
unprecedented rates -
9 next slide

Worldwide LHC Computing Grid
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Data transfers

< Final readiness test Preparation for LHC startup LHC physics data
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LHCOPN - current status
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MoU defines key performance and support metrics for Tier 1
and Tier 2 sites

— Reliabilities are an approximation for some of these
— Also metrics on response times, resources, etc.

The MoU has been an important tool in bringing services to
an acceptable level

Sergio Bertolucci, CERN 24



Success with real data because:

A& * Focus on real and continuous production use of the service over several
years (simulations since 2003, cosmics)

v~ j5| © Dataand Service challenges to exercise all aspects of the service — not just
Jtﬁ_.,é-i ' for data transfers, but workloads, support structures etc.

 Challenges
— SC1 - December 2004
— SC2 - March 2005
— SC3 = July2005

» Testing with special emphasis on Data Management
* Goals largely exceeded for the T2 sites, service reliability and sustained transfer rates

— SC4 - June 2006

* Offline data processing requirements can be handled by the Grid to the nominal LHC data rate
* Large participation of T2 sites, all T1 sites were in
* Required transfer rates (disk-tape) achieved and in some cases exceeded

— CCRC’08 = March + June 2008

* Measurement of the readiness of the Grid services and operations before real data takin
* All experiments simultaneously stressing the WLCG infrastructure in close to real conditions

* Experiments running their Full Dress Rehearsals and scheduling key periods together with the
CCRC’08 challenge

— STEP’09 > May 2009

» Stress and scale testing of all experiment workloads including tape recall and massive end user
analysis

Worldwide LHC Computing Grid
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Has meant very rapid data distribution and
analysis

— Data is processed and available at Tier 2s within
hours!

| RAW at Custodial T1
IREL_ITANERST_tima - Ties|_rensior_tima (Maurs] for ol TIERTS, ugdated 20100111 182514 | _!W.".'_“.'&m_ g
f B H H ; Moz 1677 =
b e . el tcz 17 =
: : = : haprtian e
Transfer time of —

~ datasets to Tier-1s

RecoToDSTOS:
Time to start reconstruction job {minutes)

- Transfer time of ~
datasets to Tier-2s

anfer_tie - e amde e, Foun

Sergio Bertolucci, CERN

CERN site busy with user analysis
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K. Aamodt et al. (ALICE), Eur. Phys. ] C 65 (2010) m

Analysis overview - Results

- dN/dn distribution

- Shape agrees well with some PYTHIA tunes

- ATLAS data shows higher value then all MCs
-MCs tuned in different region of phase
space

Note suppressed
0 on y-axis
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Grids & HEP: Common history

li * CERN and the HEP community have been involved with grids
= from the beginning

6. K Recognised as a key technology for implementing the LHC
computing model

 HEP work with EC-funded EDG/EGEE in Europe,
iVDGL/Grid3/0SG etc. in US has been of clear mutual benefit

— Infrastructure development driven by HEP needs

— Robustness needed by Evolution of Grids
WLCG is benefitting other

communities

[-r] = — Transfer of technology from WLCG
m -
8 M EUDataGri EGEE | EGEE EGEE
U é HEP . U DataGrid GEE 1 2 . G 3_’
[=3
J ; * Ganga, AMGA, etc used by
; é many Communltles nOW 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
=} l 1 1 1 1 1 1 [ 1 1 1 1 1 1 1
B I L] I I ] L] I I L] I I ] ] ] I
= Service Cosmics
Challenges First
# i
. physics
Data
Challenges



Large scale = long times

£% + LHC, the experiments, & computing have taken
; ~20 years to build and commission

* They will run for at least 20 years

* We must be able to rely on long term
infrastructures

— Global networking
— Strong and stable NGls (or their evolution)

e That should be eventually self-sustaining
— Long term sustainability - must come out of the
current short term project funding cycles

Worldwide LHC Computing Grid
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Longer term future

4% + Long term sustainability of the infrastructure
' ' We have achieved what we set out to do — provide an environment

oy for LHC computing;
fl;’)"ﬂ' And we have spun-off significant general science grid
infrastructures

\_____ BUT:isitsustainableinthelongterm??2

* Need to adapt to changing technologies
— Major re-think of storage and data access
— Virtualisation as a solution for job management

— Complexity of the middleware compared to the actual use
cases

e Network infrastructure
— This is the most reliable service we have

— Invest in networks and make full use of the distributed
system (i.e. Leave data where it is)?

Worldwide LHC Computing Grid

Sergio Bertolucci, CERN 30
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Sustainability

g& * Grid middleware
— |Is still dependent upon project funding — but this is a very
risky strategy now
— Limited development support in EMI (for example)
* Must (continue) to push for mainstream, industrial
solutions:
— Messaging, Nagios for monitoring are good examples

— Fabric and job management are good candidates for non-
HEP-specific solutions

e Because .... Data Management is not solved

— And we must invest significant effort here to improve the
reliability and overall usability; must reduce complexity (e.g.
SRM — functionality and implementations)

— But — we are not alone — other sciences expect to have
significant data volumes soon

— Must take care not to have special solutions

Sergio Bertolucci, CERN 31
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CERN, WLCG and EGI - the future

WLCG needs to be able to rely on strong and
stable global e-science infrastructures

— In Europe this means the NGls and EGI

WLCG is a very structured large user community

— |t can serve as a model for others — they can also learn
from our mistakes

CERN has connections to the other EIROs which
are also large scientific communities, several of
which are associated with ESFRI projects

— Can play a role in bringing these to EGI

CERN also supports other visible communities:
— E.g. UNOSat

Sergio Bertolucci, CERN 32



LHC is not alone

g5 + HEP has been a leader in needing and building
S global collaborations in order to achieve its goals
* |tis nolonger unique — many other sciences now

have similar needs

— Life sciences, astrophysics, ESFRI projects

— Anticipate huge data volumes

— Need global collaborations

 There are important lessons from our experiences,

— HEP was able to do this because it has a long history of
global collaboration; missing from many other sciences

e \WWe must also collaborate on common solutions
where possible

Worldwide LHC Computing Grid
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Summary

 LHC is operational and
producing physics!

e Collaborative science on a
global scale is a reality and
LHC can act as a model for
others

Sergio Bertolucci, CERN
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