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Science Gateways &  
Client/Server Computing 

•  A Science Gateway is a community-developed set of 
tools, applications, and data collections that are 
integrated via a portal or a suite of applications. 

•  The Client/Server Computing is a distributed application 
architecture that partitions tasks or work loads between 
service providers (servers) and service requesters 
(clients). 
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Science Gateways &  
Client/Server Computing 

•  Science gateways and client/server applications … 
–  share the main fundamental ideas 
–  address the same purposes 
–  are realized using different technologies 
–  are deployed in different ways 
–  interact with users through different interfaces 

 The choice between them will be made considering the 
target community (both users and developers) 
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Motivations & Advantages 
(for users) 

•  In the context of HEP computing, the client/server 
applications can…  
–  automate (as much as possible) complex analysis 

workflows 
–  allow more advanced job monitoring with centralized front 

ends 
–  hide configuration complexity on heterogeneous grid 

environment 
–  hide implementation details to the users 
–  automatic resubmission in case of failure 
–  allow (strong) centralized policies 
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Motivations & Advantages 
(for operators and developers) 

•  In the context of HEP computing, the client/server 
applications can…  
–  extend/integrate the functionalities of the middleware 
–  help to manage centrally updates 
–  improve support to users by operators 
–  avoid destructive congestions interacting with the grid 
–  improve the scalability of the entire “computing model” 

6	
  



The experience with  
CRAB tool in CMS 

CRAB, a Python tool intended to create, submit and 
manage CMS analysis jobs in a Grid environment. 

•  A single tool addresses different applications/purposes: 
–  CMSSW analysis over the Grid 
–  private MC production 
–  complex workflow automation 

•  Started as standalone application  
 it is evolved to a client/server application (in 

production since July 2007) 
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Standalone vs Client-Server 
(workflow point of view) 
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Server architecture 

•   Agent-based model 

•  Publish&Subscribe 
message service 

•  Most components are   
multi-threading 

•  Transparent support to 
multiple storage systems 
(SEAPI) and multiple 
middlewares (BossLite) 
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If a component/thread crashes, 
the system continues to work  

Other services provided 
by the server will be not 

compromised 

At worst, smooth 
degradation of QoS 



CRAB deployment  
on Grid infrastructure 

•  CRAB deployment strategy for CMS 
–   enforce fault-tolerance 
–   avoid single point congestion 
–   gLite is the main middleware used 
–   periodic challenges are performed to test and stress the 

infrastructure 

•  Different CRAB-AS in production now 
–  located at CERN (CH), UCSD (US), BARI (IT) 
–  each physic groups can deploy it’s own unofficial server 

•  Analysis Operators’ team (AnaOps) manages and 
monitors the services 
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Statistics: starting point 

•  Source of statistics: CMS Dashboard  

•  Focus on comparison between standalone and client/
server approaches 
–  trend analysis from Jan 2008 to Feb 2010 

•  Statistic is not “perfect” 
–  sometimes testing jobs submitted by CRAB developers are 

counted as analysis jobs… 

•  Only analysis jobs on T2 level were considered 
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CRAB Standalone vs Server 
(2008 – 2009) 
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CRAB Standalone vs Server 
(last 6 months, Sep’09 - Feb’10) 
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  54% of submissions were made through the server  

Source: CMS Dashboard, queried @ 27/03/2010  



CRAB Standalone vs Server 
(2009) 
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  Source: CMS Dashboard, queried @ ~02/2010  
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Considerations & Remarks 

•  Architectural aspects of the software are the key factors 
to reach success 
–  good performance achieved 
–  good stability and reliability 

•  Inside CMS community, the adoption of client/server 
approach is increasing 
–  good feedback by users 
–  good quality of service reached 

•  The only (relevant but known) problems are related to 
data movement 
–  stage-out remains a critical operation across the Grid, influenced by 

several factors 
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Improvements &  
Future works 

•   Consolidate the actual architecture 
–  change the interaction with gLite middleware (CLI instead of API) 
–  better strategies for stage-out operations 
–  maintain the best interoperability for all middlewares supported 
–  reduce the number of jobs aborted 
–  improvements for intelligent resubmission   

•   New framework for all CMS computing: WMCore 

–  one application targets the online (T0), the official production 
(T1) and the user analyses (T2) 

–  communications based on RESTful web services 
–  too young to go to production (expected for…) 
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THANK YOU FOR YOUR 
ATTENTION 

Questions? 

Special thanks to Daniele Spiga (CRAB), Fabio Farina (CRAB), Mattia 
Cinquilli (CRAB) and Julia Andreeva (CMS Dashboard) 
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The CRAB history 
(backup slide) 
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