
Client/Server Grid applications to
manage complex workflows

Filippo Spiga*
on behalf of CRAB development team

* INFN Milano Bicocca (IT)

Outline

•  Science Gateways and Client/Server computing

•  Client/server approach for CMS distributed analysis

•  Usage statistics and trends

•  Considerations, remarks and future works

2	

Science Gateways &
Client/Server Computing

•  A Science Gateway is a community-developed set of
tools, applications, and data collections that are
integrated via a portal or a suite of applications.

•  The Client/Server Computing is a distributed application
architecture that partitions tasks or work loads between
service providers (servers) and service requesters
(clients).

3	

Science Gateways &
Client/Server Computing

•  Science gateways and client/server applications …
–  share the main fundamental ideas
–  address the same purposes
–  are realized using different technologies
–  are deployed in different ways
–  interact with users through different interfaces

 The choice between them will be made considering the
target community (both users and developers)

4	

Motivations & Advantages
(for users)

•  In the context of HEP computing, the client/server
applications can…
–  automate (as much as possible) complex analysis

workflows
–  allow more advanced job monitoring with centralized front

ends
–  hide configuration complexity on heterogeneous grid

environment
–  hide implementation details to the users
–  automatic resubmission in case of failure
–  allow (strong) centralized policies

5	

Motivations & Advantages
(for operators and developers)

•  In the context of HEP computing, the client/server
applications can…
–  extend/integrate the functionalities of the middleware
–  help to manage centrally updates
–  improve support to users by operators
–  avoid destructive congestions interacting with the grid
–  improve the scalability of the entire “computing model”

6	

The experience with
CRAB tool in CMS

CRAB, a Python tool intended to create, submit and
manage CMS analysis jobs in a Grid environment.

•  A single tool addresses different applications/purposes:
–  CMSSW analysis over the Grid
–  private MC production
–  complex workflow automation

•  Started as standalone application
 it is evolved to a client/server application (in

production since July 2007)

7	

Standalone vs Client-Server
(workflow point of view)

8	

RB

CE

Output

DataWN

SE

File Location

DBS

Dataset Discovery

gsiftp server

Dataset Location
SEs

jdl,

BOSS DB

Output

Job

jdl

DLS (DLI enabled, LFC based)

Jdl, Job

direct submission available

fileblocks

fileblocks
SEs

LFN, #events, fileblocks

datasetpath

trivial file catalog

Proxy

UserBox CRAB Client

CRAB server

PhEDEx

UI

jdl, job

Output

Output (also to remote SE)

WN

SE

Dataset Discovery

Dataset Location

File Location

trivial file catalog

jdl, job,

DLS

DBS
C

R
A

B

SEs

(DLI interface)

CE

Data

DatasetPath

Fileblocks

LFNs, #events, fileblocks

RB/WMS

LFN !> PFN

PhEDEx

C

R

A

B

Server architecture

•  Agent-based model

•  Publish&Subscribe
message service

•  Most components are
multi-threading

•  Transparent support to
multiple storage systems
(SEAPI) and multiple
middlewares (BossLite)

9	

TASK
TRACKING

ADMIN
CONTROL

ERROR
HANDLER

JOB KILLER

CRAB JOB
CREATOR

TASK LIFE
MANAGER

TASK
REGISTER

CRAB
SERVER
WORKER

JOB
TRACKING

GET
OUTPUT

COMMAND
MANAGER

NOTIFI-
CATION

HTTP
FRONTEND

USER
(BROWSER, MAILBOX, USER INTERFACE)

MIDDLEWARE

MYSQL
DATABASE
(BOSSLITE)

ST
O

RA
G

E
M

YP
RO

XY

GRID

-submit

gSOAP

COMMAND
MANAGER

TASK
REGISTER

CLIENT
SERVER

CRAB
SERVER
WORKER

Storage
Element

GSIFTP MySQL
DATABASE

SQLITE DB

Components interaction example
(submission)

10	

If a component/thread crashes,
the system continues to work

Other services provided
by the server will be not

compromised

At worst, smooth
degradation of QoS

CRAB deployment
on Grid infrastructure

•  CRAB deployment strategy for CMS
–  enforce fault-tolerance
–  avoid single point congestion
–  gLite is the main middleware used
–  periodic challenges are performed to test and stress the

infrastructure

•  Different CRAB-AS in production now
–  located at CERN (CH), UCSD (US), BARI (IT)
–  each physic groups can deploy it’s own unofficial server

•  Analysis Operators’ team (AnaOps) manages and
monitors the services

11	

Statistics: starting point

•  Source of statistics: CMS Dashboard

•  Focus on comparison between standalone and client/
server approaches
–  trend analysis from Jan 2008 to Feb 2010

•  Statistic is not “perfect”
–  sometimes testing jobs submitted by CRAB developers are

counted as analysis jobs…

•  Only analysis jobs on T2 level were considered

12	

CRAB Standalone vs Server
(2008 – 2009)

13	

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SERVER
DIRECT

DIRECT;
77%

SERV;
23%

2008

DIRECT;
53%

SERV;
47%

2009

Source: CMS Dashboard, queried @ 27/03/2010

CRAB Standalone vs Server
(last 6 months, Sep’09 - Feb’10)

14	

 54% of submissions were made through the server

Source: CMS Dashboard, queried @ 27/03/2010

CRAB Standalone vs Server
(2009)

15	
 Source: CMS Dashboard, queried @ ~02/2010

Restart	
 of	
 LHC	

Number of distinct
CRAB users:
150~200/day

Max distinct users
peak reached:

~250

Considerations & Remarks

•  Architectural aspects of the software are the key factors
to reach success
–  good performance achieved
–  good stability and reliability

•  Inside CMS community, the adoption of client/server
approach is increasing
–  good feedback by users
–  good quality of service reached

•  The only (relevant but known) problems are related to
data movement
–  stage-out remains a critical operation across the Grid, influenced by

several factors

16	

Improvements &
Future works

•  Consolidate the actual architecture
–  change the interaction with gLite middleware (CLI instead of API)
–  better strategies for stage-out operations
–  maintain the best interoperability for all middlewares supported
–  reduce the number of jobs aborted
–  improvements for intelligent resubmission

•  New framework for all CMS computing: WMCore

–  one application targets the online (T0), the official production
(T1) and the user analyses (T2)

–  communications based on RESTful web services
–  too young to go to production (expected for…)

17	

THANK YOU FOR YOUR
ATTENTION

Questions?

Special thanks to Daniele Spiga (CRAB), Fabio Farina (CRAB), Mattia
Cinquilli (CRAB) and Julia Andreeva (CMS Dashboard)

18	

The CRAB history
(backup slide)

19	

CRAB_1_X_X

CRAB_2_X_X (10/2007)
CRAB_2_7_1 (03/2010)

CRABSERVER_0_0_1 (07/2007)

CRABSERVER_1_0_X (05/2008)

CRABSERVER_1_1_0 (11/2009)

CRABSERVER_1_1_1 (03/2010)

2004/2005 2006 2007 2008 2009 2010

