PLASMA RESEARCH
ACCELERATOR WITH
EXCELLENCE IN
APPLICATIONS

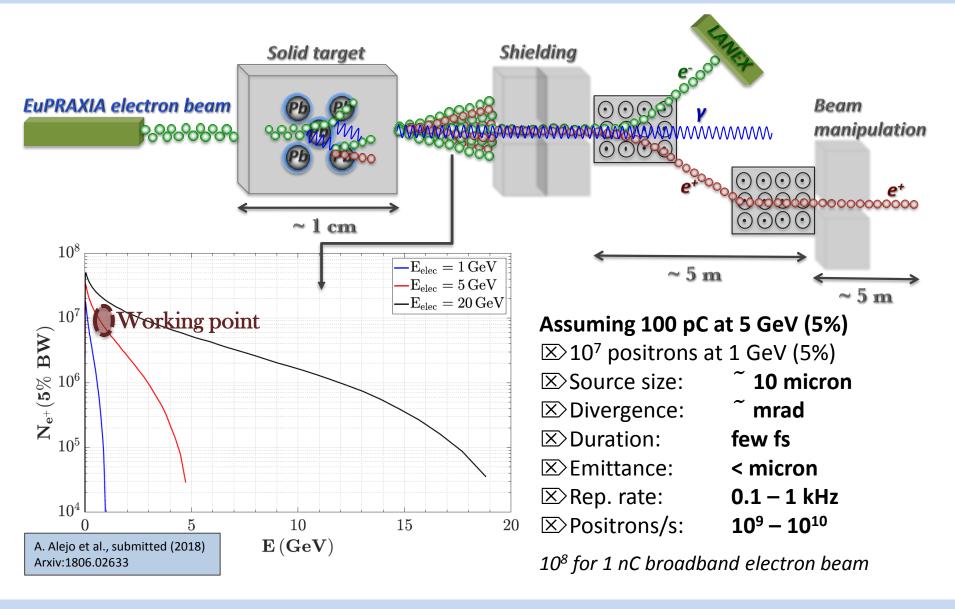
WP7: High energy physics and other pilot applications

Gianluca Sarri, Arnd Specka, and Roman Walczak Queen's University Belfast, UK g.sarri@qub.ac.uk

Summary since Lisbon

Three "parallel beams" with LPWF injector as well as RF injector (RF injector switch-yard needed).

- High charge electron beam for a positron source and HEP *.
- 2. X-rays (betatron radiation) for medical imaging *.
- 3. Gamma-rays and QED studies (Compton source) *.
- Ad 1. ALEGRO workshop is very supportive; a plan to form a "positron lab" project to use EuPRAXIA positron source. A presentation and a discussion planned at 13th POSIPOL workshop to be held at CERN from 3rd to 5th of September 2018.
- Ad 3. A presentation and a discussion at Probing strong-field QED in electron-photon interactions 21-23 August 2018 at DESY.

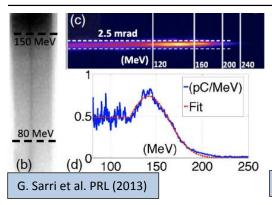

A parallel session at this Symposium needed with WP 2, 3 and 5.

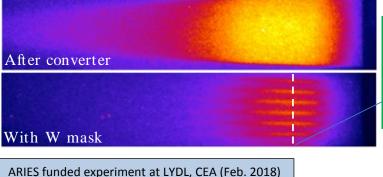
* Representative examples of applications at this beam.

High energy positrons

High energy positrons

	Units	FACET-I	FACET-II	LWFA
E	GeV	21	10	1
P	\mathbf{W}	7.4	9.6	3
Q_e	pC	350	500	2
σ_x	$\mu\mathrm{m}$	30	4	10
σ_y	$\mu \mathrm{m}$	30	4	10
σ_z	$\mu\mathrm{m}$	50	6.4	0.6
ϵ_x^*	mm mrad	200	7	500
ϵ_x^* ϵ_y^*	mm mrad	50	3	500
ΔE	%	1.5	1	5
f	${ m Hz}$	1	1	$10 - 10^3$
ℓ	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	5×10^{23}	6×10^{25}	10^{22-24}


⊠ Low energy tunability

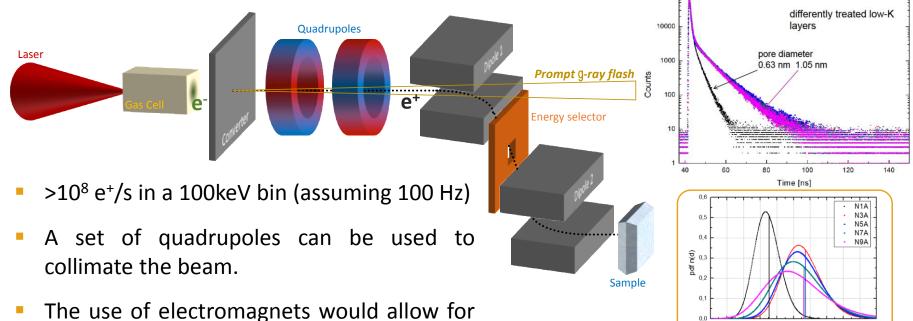

⋉ Same charge per second

Comparable transverse size

⋈ Much shorter beam!

⋈ Higher normalized emittance

Complementary test-facility for positron acceleration (wake-field or radiofrequency)


Low energy positrons

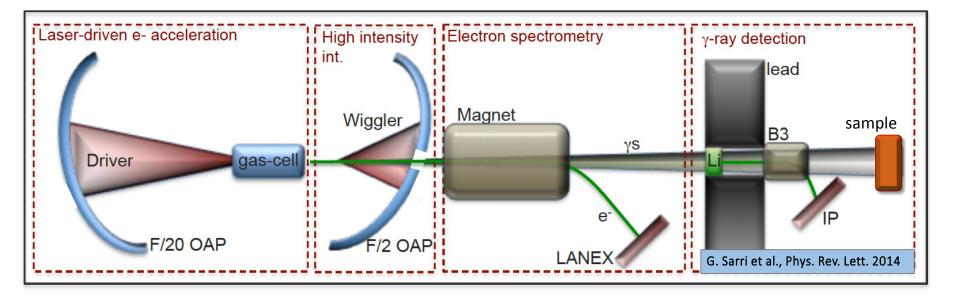
- Positron annihilation spectroscopy allows detailed characterization of materials
- Advantages: Suitable for any material, detects cracks and imperfections inside samples.
- **Typical disadvantages**: Requires a β ⁺ source and coincidence detectors (slow)

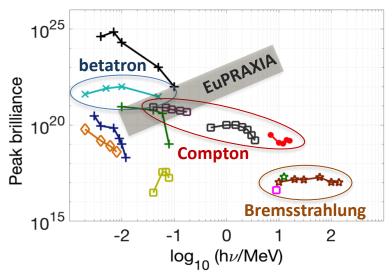
Using laser-driven electron beams can reduce the pulse duration, increase repetition

rate and positron flux.

Collaboration with Innovation at RAL and Rolls Royce

quick and on-line energy selection


Krause-Rehberg et al. Helmholtz Centre Dresden-Rossendorf

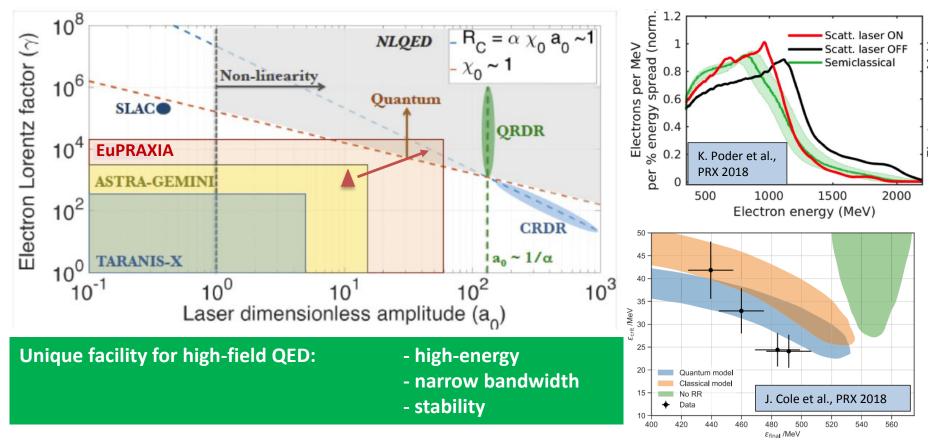

Pore size d [nm]

Compton source

Electron beam refocusing down to approx. 10 microns with an overall length of the order of a few metres

- Narrow-bandwidth (\sim 4%) x-ray photons
- Tuneable energy between 10s of keV to MeVs
- 5 fs, 10 micron spot, few mrad
- Peak brilliance of approx. 10²² ph s⁻¹ mm⁻² mrad⁻²

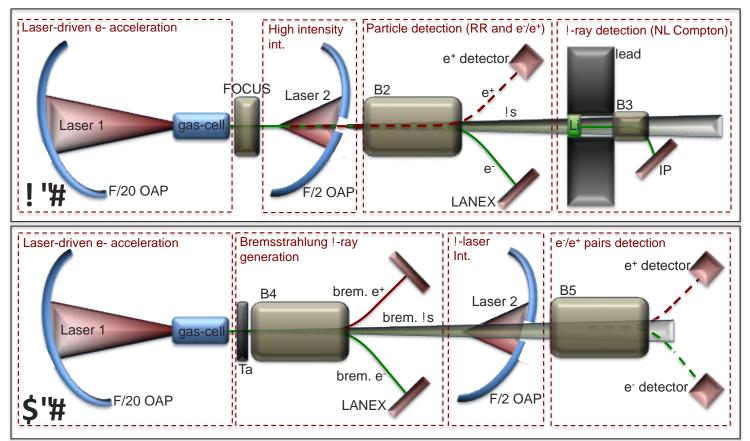
One of the brightest narrowband x-ray sources available



High-field QED

Unique opportunity to have a narrowband ultra-relativistic electron beam synchronized with a PW-scale laser at a high repetition rate

Studies of high-field quantum electrodynamics (> Schwinger field) and access exotic phenomena such as: quantum radiation reaction, photon-photon scattering, pair production



High-field QED

Unique opportunity to have a narrowband ultra-relativistic electron beam synchronized with a PW-scale laser at a high repetition rate

Studies of high-field quantum electrodynamics (> Schwinger field) and access exotic phenomena such as: quantum radiation reaction, photon-photon scattering, pair production

EUROPEAN
PLASMA RESEARCH
ACCELERATOR WITH
EXCELLENCE IN
APPLICATIONS

Thanks for your attention!

Gianluca Sarri, Arnd Specka, and Roman Walczak Queen's University Belfast, UK g.sarri@qub.ac.uk

