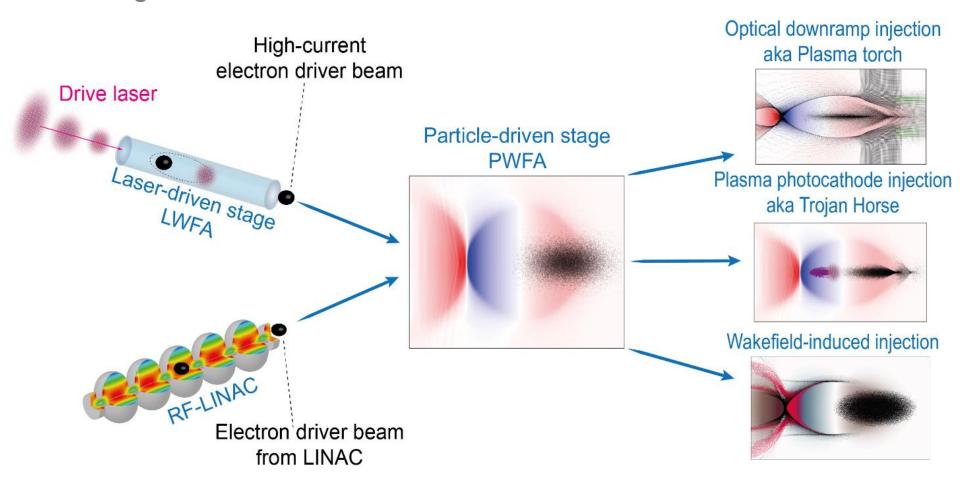
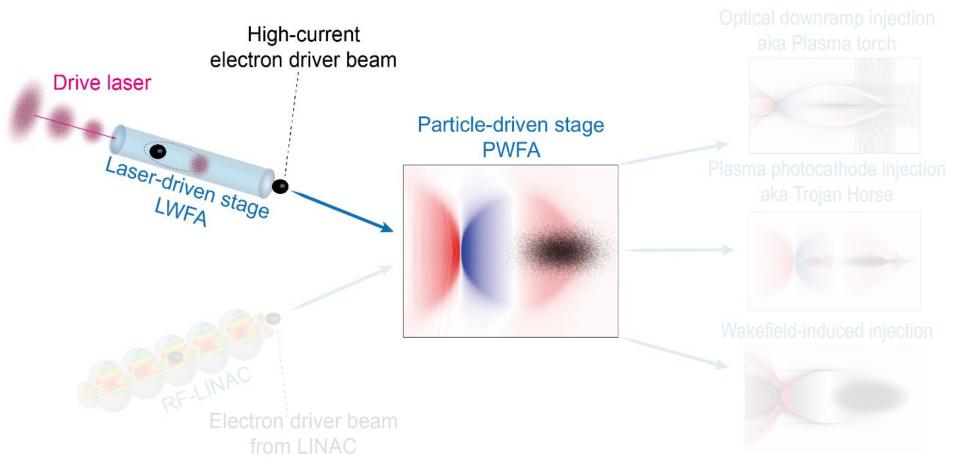


EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

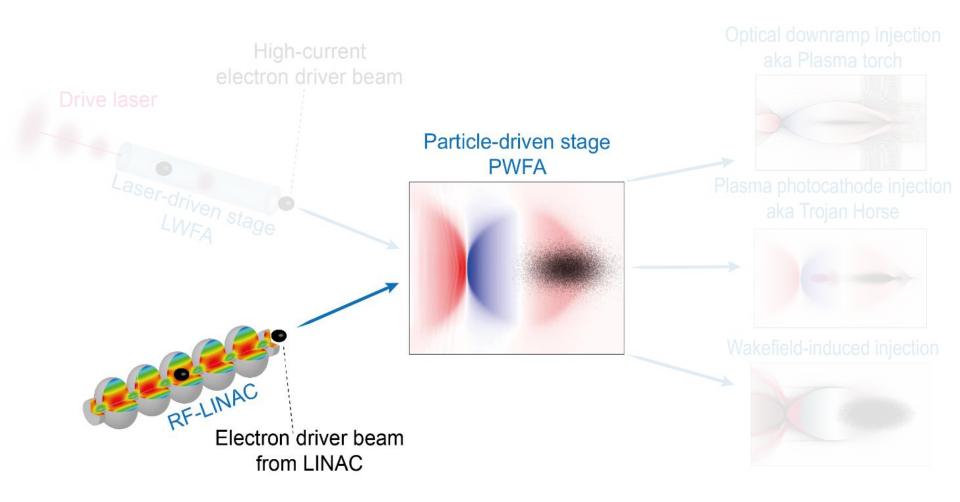

WP 14: Hybrid Laser-Electron-Beam Driven Acceleration Liverpool 2018-07-04

Bernhard Hidding / Strathclyde Alberto de la Ossa / DESY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

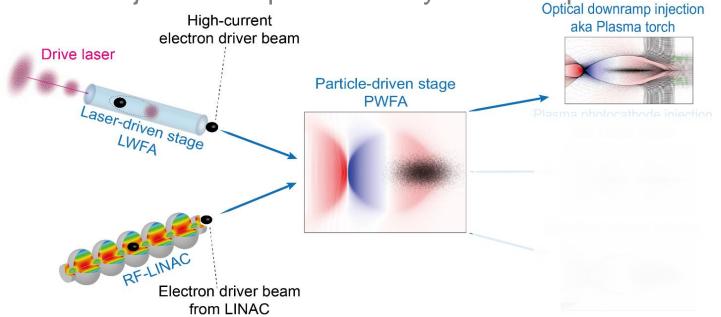

Overview on hybrid approach chain: exploit complementary advantages of LWFA and PWFA

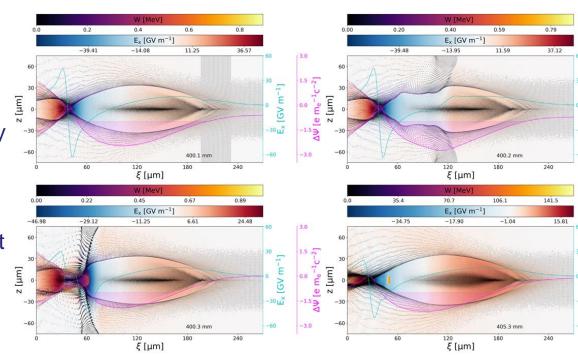
- ☐ Use lasers for ionization and to produce high current electron bunches
- ☐ Harness dephasing-free, long acceleration distances of PWFA
- Realize dark-current free, ultrahigh quality electron bunches by unique injection methods


LWFA→PWFA

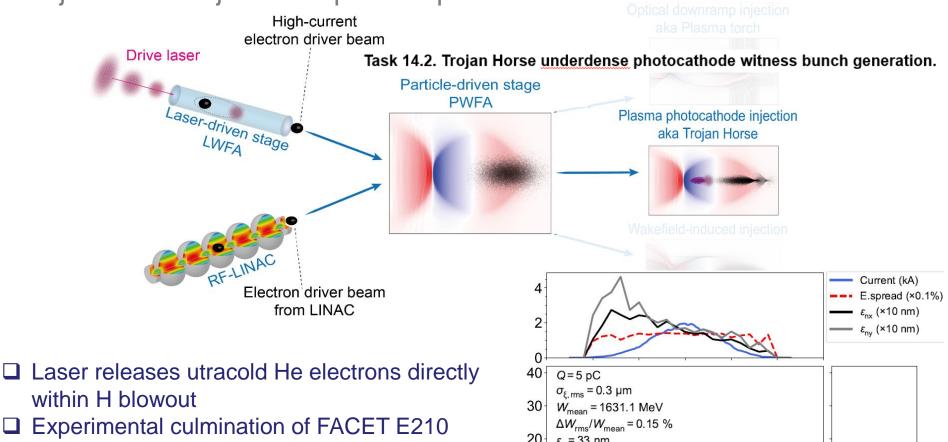
Task 14.4. Exploiting LWFA-generated electron bunches as drivers for PWFA.

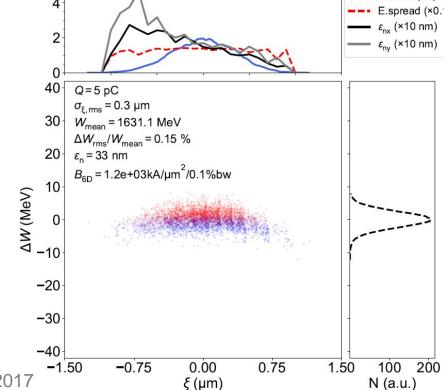
- ☐ Electron bunches from LWFA have high current, significant energy spread: ideal drivers for PWFA
- ☐ Successful experiments e.g. at Jena, LMU, HZDR (to be published)
- ☐ Laser used for LWFA, and to preionize PWFA stage


LINAC→PWFA


- ☐ Successful experiments at FACET e.g. in the E210: Trojan Horse programme
- First experiments at FLASHforward, INFN, CLARA
- Laser required to (selectively) preionize PWFA stage

Wakefield-induced ionization injection (WII) High-current electron driver beam Drive laser Particle-driven stage **PWFA** -aser-driven stage LWFA Wakefield-induced injection Electron driver beam from LINAC $z = 2.6 \, \text{mm}$ Q = 11.14 pC p_z [GeV/c] 1.4 $\Delta \zeta = 0.09 \, \mu m$ $\Delta \gamma / \langle \gamma \rangle = 3.9 \times 0.1\%$ $1.54 \times 100 \text{ nm}$ 1.2 ■ Hydrodynamically localized He dopant 1.33 × 100 nm ionized by wakefield, laser required only $\langle p_z \rangle$ = 1.209 GeV/c for preionization of hydrogen fraction Can produce beautiful bunch with ~100 Current [kA] E. spread [x 0.1%] 15 Emitt. $x \times 100 \text{ nm}$ nm emittance, sub-% energy spread Emitt. y [x 100 nm] 10 A. Martinez de la Ossa et al., Phys. Rev. Lett. 111, 5 245003 (2013); Phys. Plasmas 22, 093107 (2015) -11.6-11.4-11.2 ζ [μ m] Task 14.3. Wakefield-induced ionisation injection.


Plasma torch injection – optical density downramp


- Laser produces He density spike, optically tailored downramp facilitates injection
- □ Realize ultrahigh quality of density downramp schemes, high tunability
- □ (Optical) density downramp injection shown for the first time at FACET in E210 programme
- D. Ullmann et al,, to be published

Trojan Horse injection – plasma photocathode

- within H blowout
- Experimental culmination of FACET E210 programme
- ☐ Tailored beam loading via escort bunch allows reduction of energy spread of ~30 nm rad witness bunch to ~0.01% level at 5 GeV
- □ Path to brightest electron beams of the world http://www.eupraxia-project.eu/the-brightest-electron-beams-ofthe-world.html
- A. Deng, O. Karger et al., to be published G.G. Manahan, F. A. Habib et al., Nat. Comm. 8, 15705, 2017

THE ROYAL SOCIETY

Directions in particle beam-driven plasma wakefield acceleration

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

04 June

Session 1 09:00-12:50

Linac-driven electron PWFA

Session 2 13:40-17:00

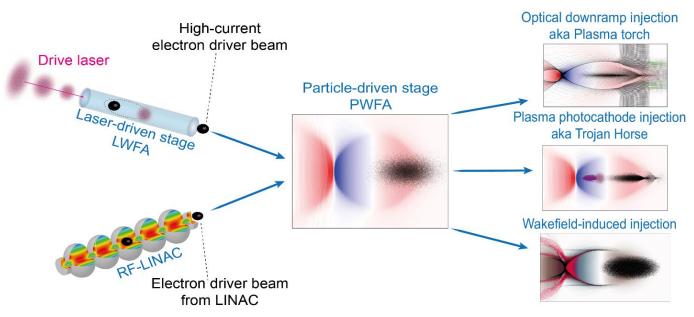
Hybrid LWFA-driven PWFA

05 June

Session 3 09:00-12:30

Positron and proton PWFA

Session 4 13:20-17:00


PWFA applications

2017 Accelerator Strategic

Review Report

Quality booster schemes are combinable with both main EuPRAXIA approaches

(sites?), LWFA-driven as well as rf-linac-driven

Science & Technology
Facilities Council

"Hybrid" topic picks up steam, additional collaborators now FSU (Zepf et al.), HZDR (Irman, Schramm et al.), LMU (Karsch et al.), LOA (Corde et al.) – more welcome

Approach can be game changer for

■ Exceeds state-of-the-art by 2-4 orders of magnitude, ~ 10 nmrad emittance, sub-0.01% energy spreads, 5 GeV+

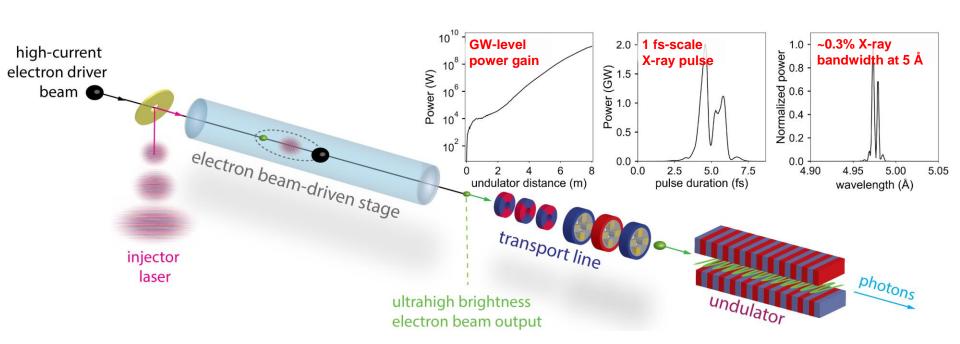
r	projected B _{n,6D} (A/m²rad² 0.1%bw) 10		$B_{6\mathrm{D}}^{\star} = \frac{I_{\mathrm{p}}}{\epsilon_{\mathrm{n,x}}\epsilon_{\mathrm{n,y}}0.1\%\sigma_{W}}$					
%		1	LWFA to		ASWISSFEL ALCLS II ASACLÆUXFEL Hard x-ray FEL linacs today			
	10 ¹⁴	0.5	1	2 elect	4 ron ener	8 gy (GeV	16)	32

14 18								
2 AXIII table	Range of exploration							
EUPPRACE (C) Quantity	Lower limit	Upper limit						
Range of exploration Lower limit Upper limit Hybrid witness beam at exit of plasma 3								
Energy	1-5 GeV							
Charge	1 pC	100 pC						
Bunch length	0.5 fs	10 fs						
Peak current per bunch	1 - 30 kA							
Total energy spread (RMS)	0.01 %	3%						
Transverse normalized emittance	10 nm rad	1 mm mrad						
Transverse norm. slice emittance	tbd	tbd						
Norm. 5D Brightness $B_{5D} = I / (\epsilon_{N,x}, \epsilon_{N,y})$	$10^{16} \text{A/m}^2 \text{/rad}^2$	10^{20} A/ m^2 /rad 2						
Norm. 6D Brightness B_{6D} = B5D/0.1% σ_E /E	10^{16} A/ m^2 /rad 2	10^{20} A/ m^2 /rad 2						
Alpha function	0							
Beta function	0.18 mm - 2 mm							
Transverse beam size (RMS)	0.02 μm	0.37 μm						
Transverse divergence (RMS)	0.1 mrad	0.4 mrad						
Jitter, beam to global reference (RMS)	1-30 fs							

High performance applications

■ E.g., realize hard x-ray free-electron lasers at ~3 GeV with ultrahigh gain

$$\rightarrow \langle \sigma_{\gamma}/\gamma \rangle \ll \rho$$


$$\rightarrow \epsilon_n < \lambda_r \langle \gamma \rangle / 4\pi \checkmark$$

Pellegrini criterion

$$L_{g,1D} = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{1D}} \propto B_e^{-1/3} \quad \checkmark$$

Gain length

Preliminary FEL simulations, including extraction, capture, transport, conditioning: hard x-ray-FEL with ultrahigh gain (10 m undulator):

3 lasers, including 350 TW, 5 Hz flagship, 3 shielded bunkers, up to 7 beamlines

Scottish Centre for the **Application** of Plasma-based Accelerators (fits well to multi-site approach and industry applications