EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP14 - Simulations

Hybrid LWFA-PWFA for a 5 GeV FEL quality beam.

This project has received funding from the European Union's research and innovation programme under grant agreement No 6

EUPRAXIA Towards LWFA-driven PWFAs: Hybrid plasma accelerators

LWFA | PWFA

Energy and brightness transformer for the production of multi-GeV FEL-capable beams

Conceptual designs

B. Hidding et al., Phys. Rev. Lett. 104, 195002 (2010). B. Hidding et al., Phys. Rev. Lett. 108, 035001 (2012).

EuPraxia Working Package 14: Hybrid Laser-Electron-Beam Driven Acceleration B. Hidding and A. M. de la Ossa

- A. Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013).
- A. Martinez de la Ossa et al., Phys. Plasmas 22, 093107 (2015).

LWFA with Ionisation injection

Why adding a PWFA stage?

- Energy gain: <u>High transformer ratio</u> in blowout regime.
- **Emittance reduction:** Novel injection techniques in PWFA for the generation of low emittance beams.
- ► High-current, low energy spread: Energy chirp balance by means of beam-loading requires high-current witness.

PWFA with Wii injection

First Stage: LWFA with ionization injection

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 4

PIC simulation example

Plasma blowout

Laser beam (98 TW)

Laser cathode N+5 and N+6 ionization

Hybrid LWFA | PWFA staging | Alberto Martinez de la Ossa | Annual MT Meeting | Helmholtz Zentrum Berlin | June 13th, 2018 | Page 5

Witness beam

X

Witness beam from LWFA with ionization injection

Average acc. field $\langle E_{\tau} \rangle \simeq 180 \text{ GV/m}$

 $L_{dp} = (\lambda_p / \lambda_0)^2 (\omega_p \tau) k_p^{-1} \simeq 7 \text{ mm}$ $\Delta E \approx (\lambda_p / \lambda_0)^2 (\omega_p \tau) \sqrt{a_0} mc^2 / 2 \simeq 0.85 \text{ GeV}$

W. Lu et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007).

LWFA beam (after 2 mm)

- Energy: **340 MeV**
- Energy spread: 2.5%
- Charge: **190 pC**
- Current: 30 kA
- Duration (fwhm): 6 fs
- Norm. emittance: ~5 µm

Further acceleration is possible...

Witness beam parameters until laser pump depletion length

LASER/plasma parameters			3D simulation (after 2 mm)	Extrapolation (after 7 mm)
P ₀	98 TW	Average energy	370 MeV	~800 MeV
τ	27 fs	Energy spread	2.5%	~2%
W0	17 µm	Energy spread (sliced)	1-2 %	~1%
a ₀	3.18	Norm. emittance	~5 µm	~5 µm
Energy	2.8 J	Charge	190 pC	190 pC
Plasma density	2 x 10 ¹⁸ cm ⁻³	Duration (fwhm)	6 fs	6 fs
Acc. distance	2 - 7 mm	Peak current	30 kA	30 kA
Injection length	0.2 mm	Brightness	1.2 kA/µm²	1.2 kA/µm²

Scaling to EuPRAXIA laser operating a 10 times less dense plasma

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 9

Fix 'normalized' laser parameters

 $a_0 = 3.18 \ k_p \tau = 2.15 \ k_p w_0 = 4.5$

 $\begin{array}{ll} P_0 \propto n_p^{-1} & \qquad & \mathcal{E} \simeq P_0 \tau \propto n_p^{-3/2} \\ & \qquad & \text{laser energy} \end{array}$

 $\bar{E} \propto n_p^{-1}$ energy gain

 $L_{\rm acc} \propto n_p^{-3/2}$ acc. distance

Witness beam properties - Same current for beam loading - Length and emittance scale as - Charge follows same scaling

 $k_p^{-1} \propto n_p^{-1/2}$

 $Q_w \bar{E} \propto n_p^{-3/2}$ - Total energy in witness

Scaling to EuPRAXIA laser operating a 10 times less dense plasma

SER/plasma parameters		Witness beam (via ionization injection)	
P 0	980 TW	Average energy	1 - 5 GeV
τ	85 fs	Energy spread	~2 %
W0	54 µm	Energy spread (sliced)	0.5 - 0.1 %
a 0	3.18	Norm. emittance	~15 µm
ergy	88 J	Charge	600 pC
a density	2 x 10 ¹⁷ cm ⁻³	Duration (fwhm)	19 fs
distance	4 - 20 cm	Peak current	30 kA
on length	0.6 mm	Brightness	0.12 kA/µm²

LWFA with II for the production of nC multi-GeV beams.

Simulation: **PWFA with Wii injection**

Second Stage: PWFA with wakefield-induced ionization injection

Drive beam from LWFA			
Average energy	2 GeV		
Energy spread	3 %		
Energy spread (sliced)	3 %		
Norm. emittance	10 µm		
Charge	190 pC		
Duration (fwhm)	19 fs		
Peak current	10 kA		
Brightness	0.1 kA/µm²		

PIC simulation example

A. Martinez de la Ossa et al., Phys. Rev. Lett. 111, 245003 (2013). A. Martinez de la Ossa et al., Phys. Plasmas 22, 093107 (2015).

Simulation: PWFA stage with Wii injection

X

A. M. de la Ossa et al., PRL 111, 245003 (2013)

Plasma blowout

Drive beam (17 kA)

Wakefield cathode He ionization

Simulation: PWFA stage with Wii injection

Witness beam

Z

A. M. de la Ossa et al., PRL 111, 245003 (2013)

Witness beam from PWFA with Wii injection

Average acc. field Further acceleratio $\langle E_{z} \rangle \simeq 465 \text{ GV/m}$ is possible...

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 14

PWFA beam (after 2.6 mm)

- Energy: **1.2 GeV**
- Energy spread: **0.5%**
- Charge: **11 pC**
- Current: 15 kA
- Duration (fwhm): **1 fs**
- Norm. emittance: ~100 nm

on
$$\Delta E_{\text{wit}} = RE_{\text{dri},0} \simeq 6 \text{ GeV}$$

transformer ratio

A. Martinez de la Ossa et al., Phys. Plasmas 22, 093107 (2015).

EUPRAXIA LPWFA design with ionization injection: EuPRAXIA example

Hybrid LWFA | PWFA design with Trojan horse

B. Hidding et al., Phys. Rev. Lett. 104, 195002 (2010). B. Hidding et al., Phys. Rev. Lett. 108, 035001 (2012).

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 16

Energy chirp compensation in a single TH-PWFA stage

Proof-of-concept 3D Particle-In-Cell simulation

to Trojan Horse injection VSim

G. G. Manahan, et.al., Nat. Commun. 8, 15705 (2017).

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 17

2nd laser pulse

escort release

Energy chirp compensation in a single TH-PWFA stage

Energy chirp compensation in a single TH-PWFA stage

G. G. Manahan, et.al., Nat. Commun. 8, 15705 (2017).

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 19

Relative energy spread scaling

G. G. Manahan, et.al., Nat. Commun. 8, 15705 (2017).

WP14: Hybrid Laser-Electron-Beam Driven Acceleration | Alberto Martinez de la Ossa | 3rd EuPRAXIA Collaboration "Week" | Liverpool UK | July 4 - 6, 2018 | Page 20

High-energy example

Hybrid LWFA | PWFA: Summary

Conceptual designs for hybrid LWFA - PWFA for the production of **multi-GeV**, superior quality beams.

Hybrid LWFA/PWFA with Wii injection:

Energy and brightness transformer: 2 x energy, 10000 x brightness. Stable beam loading conditions for low energy spread: ~0.1% at 5 GeV energy. Simple setup.

Hybrid LWFA/PWFA with TH and the Escort dechirping technique:

The beam loading process is decoupled from witness beam production. Keeps the ultra-low emittance of the witness beam.

