

The CLD (CLIC-like Detector) for FCC-ee

Emilia Leogrande (CERN), with contributions from Konrad Elsener and Oleksandr Viazlo and help from the CLICdp Collaboration

Detector Design Meeting 30/01/2018

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

Introduction

The CLD is derived from the most recent CLIC detector model (CLICdet)

- Silicon pixel vertex detector $\hat{\mathbf{x}}$
- Silicon tracker $\hat{\mathbf{x}}$
- Silicon-tungsten ECal $\hat{\mathbf{x}}$
- Scintillator-steel HCal $\hat{\mathbf{x}}$
- Superconducting solenoid interleaved with RPC muon chambers $\hat{\mathbf{x}}$

Constraints from the MDI at FCC-ee

- ☆ Detector solenoidal field 2T (4T for CLIC)
 - Outer tracker radius increased to 2.15m (1.5m for CLIC)
- ☆ Beampipe radius 15mm (29mm for CLIC)
 - Inner vertex radius decreased to 17mm (31mm for CLIC)
- ☆ Max collision energy 365GeV (3TeV for CLIC)
 - + Hadronic calorimeter depth reduced to $5.5\lambda_{I}$ (7.5 λ_{I} for CLIC)
- Layout respects the 150mrad cone reserved for beam- and MDI-equipment $\hat{\mathbf{x}}$

Constraints from the continuous operation at a circular collider

- \Rightarrow Power pulsing not possible
- Need for detailed engineering studies on cooling systems $\hat{\mathbf{x}}$

Detector layout and main parameters

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

Concent	CLICdat	
Concept	CLICaet	CLD
Vertex inner radius [mm]	31	17
Tracker technology	Silicon	Silicon
Tracker half length [m]	2.2	2.2
Tracker outer radius [m]	1.5	2.1
Inner tracker support cylinder radius [m]	0.575	0.675
ECAL absorber	W	W
ECAL X_0	22	22
ECAL barrel r _{min} [m]	1.5	2.15
ECAL barrel Δr [mm]	202	202
ECAL endcap z_{min} [m]	2.31	2.31
ECAL endcap Δz [mm]	202	202
HCAL absorber	Fe	Fe
HCAL λ_{I}	7.5	5.5
HCAL barrel <i>r</i> _{min} [m]	1.74	2.40
HCAL barrel Δr [mm]	1590	1166
HCAL endcap <i>z</i> _{min} [m]	2.4	2.4
HCAL endcap Δz [mm]	1590	1166
Solenoid field [T]	4	2
Solenoid bore radius [m]	3.5	3.7
Solenoid length [m]	8.3	7.4
Overall height [m]	12.9	12.0
Overall length [m]	11.4	7.5

The vertex and tracker

Vertex detector

- \Rightarrow Silicon pixels 25x25 μ m²
- single point resolution = $3 \mu m$
- 3 barrel double layers $\hat{\mathbf{x}}$
- 3 sets of double disks $\hat{\mathbf{x}}$
- material budget: 0.3%X0 per layer $\hat{\mathbf{x}}$

Tracker detector

- Silicon pixels and microstrips $\hat{\mathbf{x}}$
- inner tracker Ŵ
 - + 3 barrel layers, 5 disks
- ☆ outer tracker
 - + 3 barrel layers, 4 disks
- single point resolution: $\hat{\mathbf{x}}$
 - + 1st inner disk: $5 \mu m \times 5 \mu m$
 - + all others: 7 μ m x 90 μ m
- material budget:
 - barrel: 1.2%X₀ per layer
 - + endcap: $1.4\%X_0$ per layer

4.4m

The ECal and HCal

Particle flow calorimetry requires high-granularity calorimeters

ECal

- Si-W sampling calorimeter
- \approx cell size 5 x 5 mm²
- \Rightarrow 40 layers (1.9mm thick W plates)
- $\Rightarrow 22X_0$

HCal

- Scintillator-steel sampling calorimeter
- \Rightarrow cell size 30 x 30 mm²
- \Rightarrow 44 layers (19mm thick steel plates)
- $5.5\lambda_{I}$ $\hat{\mathbf{x}}$

Combined thickness ECal + HCal = $6.5\lambda_{I}$

The magnet and muon system

The magnet system

- ☆ superconducting coil
 - + 2T field
- ☆ return yoke
 - + barrel: 1T field
 - endcap: no field in the simulation at the moment

The muon system

- ☆ RPC chambers
 - + 6 layers
 - additional possible 7th layer as close as possible to the coil, as tailcatcher for hadron showers
 - + cell size 30 x 30 mm²

SECTION 2: DETECTOR PERFORMANCES

Detector performances are studied in full simulation with the iLCSoft (Linear Collider community software)

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

Tracking performances $\hat{\mathbf{x}}$

- impact parameter resolution
- angular resolution
- momentum resolution
- single particle efficiency
- complex events efficiency

Calorimeters performances $\hat{\mathbf{x}}$

- photon energy resolution
- kaon energy resolution
- jet energy resolution
- + photon ID efficiency
- charged particles efficiency

Impact parameter resolution

- + Resolution = σ of the Gaussian fit of distribution (reco true)
- + Statistics used: 10k muons at fixed energy and θ for each datapoint

 Achieved transverse impact parameter resolution below 2µm and longitudinal impact parameter resolution ~2µm for 100GeV muons in the barrel

Emilia Leogrande | Detector Design Meeting, CERN - 30/01/2018

on (reco - true) d θ for each datapoint

Angular resolution

- Resolution = σ of the Gaussian fit of distribution (reco true)
- Statistics used: 10k muons at fixed energy and θ for each datapoint ◆

Achieved Θ resolution of 0.04 mrad and φ resolution ~0.03 mrad for 100 GeV muons in the barrel $\hat{\mathbf{x}}$

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

Momentum resolution

- + Resolution = σ of the Gaussian fit of distribution (reco true)/true²
- + Statistics used: 10k muons at fixed energy and θ for each datapoint

Emilia Leogrande | Detector Design Meeting, CERN - 30/01/2018

on (reco - true)/true² dθfor each datapoint

Achieved momentum resolution of $4x10^{-5}$ GeV⁻¹ for 100GeV muons in the barrel

Tracking efficiency for single muons

- Statistics used: 2M muons for each dataset

 - ◆

Tracking efficiency for Z-like boson events decaying at rest into light quarks

Efficiency = fraction of pure reconstructed particles out of the reconstructable MC particles

- purity >= 75%
- Statistics used for both samples: ~4200 events

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

purity: highest fraction of track hits belonging to the same MC particle

- stable
- pT > 0.1 GeV/c
- $\cos\theta < 0.99$
- N unique hits >=4

Cuts for both plots: + $10 < \theta < 170 \deg$ vertex R < 50 mm

Single particle energy resolution: photons and kaons

Resolution = σ of the Gaussian fit of distribution (reco - true) / true

Statistics used: 100k events per datapoint

Achieved energy resolution of 1.7% for 100GeV photons and 7.3% for 100GeV neutral kaons $\hat{\mathbf{x}}$

Jet energy resolution

- $\text{RMS}_{90}(E_j)$ Resolution per single jet $(_j) =$ $mean_{90}(E_i)$
- Statistics used: 10k Zuds events

$\text{RMS}_{90}(E_{jj})$ $\sqrt{2}$ \rightarrow (no jet reconstruction at this stage) mean₉₀(

Single particle PID efficiency: photons

- Statistics used: 100k events for each datapoint particle guns with fixed energy and flat cosθ distribution
- ☆ Reconstructed PFO is efficient if:
 - reconstructed PFO and true particle of the same type
 - angular matching: $\Delta \Theta < 0.01$ rad and $\Delta \phi < 0.02$ rad values driven by calorimeter angular resolution
 - + energy matching: $0.75 * \text{sqrt}(E) = 5 * \sigma(ECal)$

PROBLEM: if >=2 neutral reconstructed PFOs per true particle

- no angular matching
- **RECLUSTERING:** sum of all the energies of PFOs in a cone:
 - If neutral PFOs are photons:

 $\Delta \Theta < 0.01$ rad and $\Delta \phi < 0.2$ rad

(defined by looking at events where γ convert)

else for non-photons:

 $\Delta \Theta < 0.035$ rad and $\Delta \phi < 0.2$ rad (needed to recover inefficiency due to calorimeter transition region)

Single particle PID efficiency: charged particles

- Statistics used: 100k events for each datapoint
 - particle guns with fixed energy and flat cosθ distribution
- ☆ Reconstructed PFO is efficient if:
 - reconstructed PFO and true particle of the same type
 - angular matching: $\Delta \Theta < 0.01$ rad and $\Delta \phi < 0.02$ rad values driven by calorimeter angular resolution
 - energy matching: |pT_truth pT_PFO | < 5% pT_truth

Summary

The CLD design is finalized for the CDR

- **Overall dimensions settled** $\hat{\mathbf{x}}$
- Requirements from the MDI fulfilled $\hat{\mathbf{x}}$
- What is missing: detailed engineering studies $\hat{\mathbf{x}}$ for the impact of the cooling systems (no power pulsing)

Detector performances obtained in full simulation

- ☆ Tracking resolution
 - + impact parameter, angles, momentum
- Tracking efficiency $\hat{\mathbf{x}}$
 - single particles and complex events
 - what is missing: overlay of e⁺e⁻ background and synchrotron radiation photons
- Energy resolution $\hat{\mathbf{x}}$
 - single particles and jets
- PID efficiency $\hat{\mathbf{x}}$
 - + photons
 - charged particles

Emilia Leogrande Detector Design Meeting, CERN - 30/01/2018

The CLD concept : Material for the Executive Summary of the FCC-ee CDR

 $N.N^*$

* CERN, Geneva, Switzerland

Abstract

This is a draft of the few pages required for the FCC-ee executive summary end of January 2018.

BACKUP SLIDES

Emilia Leogrande | CLIC Workshop 2018, CERN - 23/01/2018

Single muon efficiency vs φ

Emilia Leogrande | CLIC Workshop 2018, CERN - 23/01/2018

Single particle PID efficiency: charged particles

Emilia Leogrande CLIC Workshop 2018, CERN - 23/01/2018

