

Interfaces between Wp3 and Wp6a

Triplets – Superconducting Link

Joint meeting wp3 – wp6a : 23 January 2018

Y.Leclercq, V.Parma and D.Ramos

Context

- Each IP1 and IP5 sides:
 - Magnets Q1 to D1
 - Cold powering:
 - Power converters in service galleries
 - DFH : 300K to 20K
 - DSH: SCLink inlet temperature 4.5K
 - DFX: 4.5K to 1.9K

LHC

Basic D1-DFX interface Layout

- Cryogenic interfaces
- Electrical layouts
- Key functions:
 - Cryogenic interfaces with QXL
 - Electrical continuity including cold diodes

Interface D1-DFX

Ø

CS

DS

D

ā

WP involved

D1

MBXF

• Work in progress:

XB/Cy

►LD ►EhFh

- Listing requirements
- Identification of responsibilities

SFHE

Preliminary sketches

Problematics

Cryogenic & Electrical requirements

Beam screen & Vacuum:

 Distance MBXF-End D1 > ≈2m : Beam aperture → VSC equipment redesign (sector valve issue + beam screen aperture)

Beam alignment at D1 end:

 Cantilever distance D1 foot – End D1 >≈3m → beam alignment difficulties (contractions, loads)

Thermal contractions:

- D1 fixed point toward CP end → Triplet cryogenic lines ≈20mm toward CP
- DFX cryogenic lines fixed toward SCLink → few mm toward SCLink
- Locate extra length for bus-bars contractions

Cold diodes & electrical connections:

• Flat bus bars for connection to cold diodes

Integration & installation :

- Longitudinal & radial integration : components in //
- Cables routing to be studied
- Access to splices & plugs (D1-DFX-SCLink) → limit radial integration at splices position

High pressure induced loads :

Vacuum + helium volumes : → dedicated designed structures

Varied studies

Design sequence:

- Find a compromise option without showstoppers
- Discuss with wp feasibility
- Iterate to optimise the final solution
- Several configurations were studied
- So far, one option presents no showstoppers but technical challenges

Option as support for discussion

Cryogenic & Electrical requirements

Beam screen & Vacuum:

- Ok for sector valve & beam vacuum equipment ✓
- Maybe not enough for aperture/beam screen overlap 🥓

Beam alignment at D1 end:

Cantilever distance D1 foot – End D1 *A*

Thermal contractions:

- D1 Jumper shall handle 20mm longitudinal displacement *I*
- DFX QXL interface "Jumper" to be studied (low pressure lines)
- Room for extra length for bus-bars contractions ✓

Cold diodes & electrical connections:

Flat bus bars for connection to cold diodes ✓

Integration & installation :

- No cryolines along the interface

: requirement fulfilled

need additional work

Minimised interface Triplet-DFX

Not yet verified:

- Feasibility of pressure profiles handling (<u>"jumper 2", plug</u>)?
- Compatibility with assembly sequence ?
- Validation with integration study in the tunnel environment ?

Observations

- Interfaces between triplets and DFX are identified
- No easy design option exists but a possible compromise may be found

- Next steps:
 - Iterate with workpackages
 - In depth studies to understand pressure induced loads and integration are needed

Installation sequence: support for discussion

- Empty tunnel
- Tooling installation
- D1 installation
- Cryolines connection
- Bus bars routing
- DFX + Cold diodes installation
- SCLink insertion
- Hydraulic connections
- Electrical connections
- Line N closure
- Vacuum vessels closure
- Beam vacuum equipment

Possible compromise found so far:

No showstoppers but comes with technical consequences

	Beam aperture Vs VSC equipment	Beam alignment	Loads distribution	D1 cryolin. contraction	DFX cryolin. contraction	Installation & connections	Integration Maintenance	Consequences
Jumpers & cryolines - J1 for wp3 on D1 - J2 onto DFX for wp6a local supply	 Minimise distance J2 in shadow 	 Compromise Less pressure loads to cantilever 	Compromise with: - J1 big Ø, high P in rigid D1 envelope - J2 with smaller Ø, lower P.	Allow movement in jumper1	Very limited	 All lines pre-assembled at the surface More space @ interco. Interco Ø ↘ by 150mm 	 No lines routed nor connected @ D1 end No lines // to interconnect nor splices → maximise access & integration J2 in shadow: longi space saved 	 20mm displacement in J1 taken by QSL design Handle pressure loads from J2 locally Design interface with QXL
Cold diodes : - Fixed to DFX in limited vacuum vessel volume	- Parallel to warm beam line	- Optimised	Challenge to handle pressure induced loads	Fixed to plug, bellows at interconnection.	J2 in DFX → full access	Pre-connected to plug @ surface Round 2 flat located at the end: optimise installation	Full access to connections & diodes replacement R2F connection in the tunnel	 Design supporting structure Heat losses by conduction for supports
Still to be defined: Overlap beam aperture / bea Extra length bus bars policy Direction for triplet bus bars SCLink installation & splices s Cables routing direction Brund hus bars	+ installation structural access J1 dedicated Th. Contracti	+ to triplets ons =20mm	Status: con Assumptio powering I Main cons rigid struct	npromises an ins need to b imited to on equences: A cural studies Cold diodes with flat NbTI Splice	re propose e confirme e cryogeni dditional c are require	ed for discussion, no ed. Interfaces betw c volume (SFHE) ar cryogenic services a ed to prove feasibil 12 dedicated to C Th. Contractions	ot ideal for anyone. een cryostats & cold id NbTi-NbTi splices. are needed, complex and ity	
(inclusion)		<~2m : 0k for be	am equipment	Valve + VSC equipment		warm beam	tube reservation	
≈3m for cantilever beam				≈11m for D1 interface, DFX, SCLInk and installation				