ASACUSA status report
2017 and plans for 2018

128th Meeting of the SPSC
23 January 2018

E. Widmann, Stefan Meyer Institute, Vienna
Co-spokesperson, ASACUSA
ASACUSA collaboration

C. Amslera, S. Arguedas Cuendisa, D. Barnab, A. Bianconic, H. Breukerd, M. Corradinie, P. Dupréd, C. Evansc, M. Flecka, A. Gligorovaa, R. Hayanof, H. Higakif, M. Horif*,f, D. Horváthb, Y. Kanaïb, B. Kolbingera, N. Kurodai, M. Lealii, E. Lodi-Rizzinii, V. Mäckela, C. Malbrunotj,a, V. Mascagnaa, O. Massiczeka, Y. Matsudaj, D. Murtagha, Y. Nagatab, A. Nandaa, N. Ogawaa, D. Phana, B. Radics21, M.C. Simona, A. Sótera, H. Spitzera, M. Strubea, M. Tajimaa,i, Y. Tanakai, S. Ulmerd, L. Venturellic, E. Widmanna*,a, M. Wiesingera, Y. Yamazakid, J. Zmeskala

aStefan Meyer Institute, bWigner Research Centre for Physics, cDipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, and INFN, dUlm Fundamental Symmetries Laboratory, RIKEN, eDepartment of Physics, The University of Tokyo, fGraduate School of Advanced Sciences of Matter, Hiroshima University, gMax-Planck-Institut für Quantenoptik, hNishina Center for Accelerator-Based Science, RIKEN, iInstitute of Physics, the University of Tokyo, jCERN, 21Department of Physics, Tokyo University of Science, 1GSI Helmholtzzentrum für Schwerionenforschung

1present address: ETH Zürich

*co-spokesperson
Content

I. Antiprotonic helium

II. CUSP experiment for $\bar{\text{H}}$ spectroscopy

III. Fragmentation studies in antiproton-nucleus annihilation

IV. Experiments with a polarized hydrogen beam

V. ASACUSA hardware contribution to ELENA
I Antiprotonic helium
Antiproton-to-electron mass ratio

Needs 3-body theory

\[\frac{\overline{p}}{\nu} = \frac{m_{\overline{p}}}{m_e} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) + \text{QED} \]
Previous results and methods

- $m_{\bar{p}}/m_e$ 2016

 Antiproton-to-electron mass ratio 1836.1526734 (15)

- Sub-Doppler two-photon laser spectroscopy

 $2-3\sigma$ away from CODATA 2010
Setup for 2-photon spectroscopy
2017 results (under analysis)

- Goal: $m_p/m_e < 0.5$ ppb
Beam usage 2017 and plans for 2018

- 2017: RFQD troubles
 - Lost 7 weeks

May, June, early July (7 weeks): RFQD problems, almost total loss of beam except for tuning. Realignment of upstream magnetic elements.

RFQD recovers and data-taking starts July 18th.
Weeks 29, 30, 31, 34 (4 weeks): pbar-4He+ (36,34)→(34,32)
Week 35 (1 week): pbar-3He+ (35,33)→(33,31)

Accumulated 29 days of publishable data (half of expected data)

- Plans for 2018

Continuation of pbar-4He two-photon
 - pbar-4He (n,l)=(36,34)→(34,32) Finished!
 - (31,30)→(30,29)
 - pbar-3He (35,33)→(33,31) Now measuring
 - (30,29)→(29,28)

Goal: antiproton-to-electron mass ratio <5×10–10
In improvements towards ELENA: lasers

- Metastable-to-metastable state transitions

Fully DPSS Nd:YAG laser pumped Ti:Sapphire laser with long-pulse alexandrite oscillator

Potential improvement: factor 100
Induction deceleration cavity for \bar{p}

• Goal: minimize stopping volume of \bar{p} in low-density gas for efficient laser spectroscopy
• Transformer with ferromagnetic cores
 • Primary winding = pulsed excitation
 • Secondary winding = beam
• Deceleration 100 keV to <50 keV
• R&D ongoing, operation after LS2
• Collaboration with KEK/J-PARC and CLIC
II. CUSP experiment for $\overline{\text{H}}$ spectroscopy
In-beam HFS spectroscopy

- Goals
 - In-beam measurement of ground-state hyperfine structure of antihydrogen to ppm-level and below
 - Produce polarized slow (<100 K) Hbar beam

- Resolution: line width $\Delta \nu \sim 1/T$
 - 1000 m/s, 10 cm:
 - 7×10^{-6} for $T = 50$ K *cf part IV*
 - > 100 \overline{H}/s in 1S state into 4π needed
 - event rate 1 / minute: background from cosmics, annihilations upstreams
Ground-State Hyperfine Splitting of H/$\bar{\text{H}}$

- spin-spin interaction positron - antiproton
- Leading: Fermi contact term

\[\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e} \right) \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c \text{ Ry} \]

Transition frequency (Hz)

- \(\nu_{\text{HFS}} \)
- \(\Delta_{\text{CPT}} (\mu_p) \)
- \(\Delta_{\text{CPT}} (\mu_e) \)

Experimental values for hydrogen

Current precision

Theoretical uncertainty

(2) experimental errors
Ground-State Hyperfine Splitting of H/\(\bar{\text{H}}\)

- spin-spin interaction positron - antiproton
- Leading: Fermi contact term

Hydrogen HFS and QED: finite size effects

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H: deviation from Fermi contact term</td>
<td>(-32.77(1)) ppm</td>
</tr>
<tr>
<td>finite electric & magnetic radius (Zemach corrections):</td>
<td>(-41.43(44)) ppm</td>
</tr>
<tr>
<td>polarizability of p/(\bar{\text{p}})</td>
<td>+1.88(64) ppm</td>
</tr>
<tr>
<td>remaining deviation theory-experiment:</td>
<td>+0.86(78) ppm</td>
</tr>
</tbody>
</table>

C. E. Carlson et al., *PRA* 78, 022517 (2008)

Finite size effect of proton/antiproton important below ~ 10 ppm

\[\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e} \right)^3 \frac{m_e \mu_p}{M_p \mu_N} \alpha^2 c \ \text{Ry} \]
Comparison of CPT tests

- Mass & frequency

Atomic fountain

Mass [GeV/c^2]

- e-e^+
- n-\bar{n}
- p-\bar{p}
- K^0-\bar{K}^0

Energy/\hbar [GHz]

- \nu_{1s-2s}
- \nu_{nS-2P}
- H-\bar{H}
- H\nu_{HFS}

ALPHA coll.

Comparison of CPT tests

- Mass & frequency

- Standard Model Extension SME

\[(i \gamma^\mu D_\mu - m_e - a^e_\mu \gamma^\mu - b^e_\mu \gamma_5 \gamma^\mu - \frac{1}{2} H^e_{\mu\nu} \sigma^{\mu\nu} + ic^e_{\mu\nu} \gamma^\mu D^\nu + id^e_{\mu\nu} \gamma_5 \gamma^\mu D^\nu) \psi = 0. \]

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

- Minimal SME: only HFS
- Non-minimal SME: also 1S-2S shows CPTV

ASACUSA collaboration
E. Widmann SPSC128 23 Jan 2018
Comparison of CPT tests

• Mass & frequency

- Mass & frequency

- Standard Model Extension SME

\[\text{From: NuPECC Long Range Plan 2017 (M. Doser) + EW Kostelecky & Bluhm arXiv:0801.0287} \]
Setup

Cavity & sextupole not used in 2017
Status before 2017

- **Mixing scheme**: direct injection MUSASHI → CUSP
- $\bar{\text{H}}$ beam observed 2.7m downstream, low rate\(^1\)
- $\bar{\text{H}}$ quantum state studied by external field ionizer FID & $\bar{\text{H}}$ detector
- Fast axial separation of $\bar{\text{p}}$ and e^+ observed: low $\bar{\text{H}}$ yield

\(^1\text{N. Kuroda et al, Nat. Commun. 5, 3089 (2014).}\)
New mixing schemes 2017

- Slow extraction scheme
- Cross merging scheme

AMT scintillators

Magnetic field distribution along the axis

Potential configuration for H synthesis

Potential on axis [V]

Distance from the center of the cusp [cm]
H detector analysis

- 2D BGO & track fitting

- Machine learning
 - Cosmics rejection 99.7%
 - False positive rate: 0.0039 s\(^{-1}\)
 - \(\bar{\nu}\) efficiency ~ 80%

n=14 significance 4.5 \(\sigma\)
\(\tau(n=14) \sim 50\,\mu s\)

C. Malbrunot et al., Phil. Trans. A 2018, in print
Antihydrogen detector fibre upgrade

Fibre bundle 2x2 of 1x1 mm² fibres
2 layers
7.7 mm geometrical resolution in z at r=0
Beam usage 2017 and plans for 2018

- **Weeks 38,39,40**
 - \bar{p} transfer MUSASHI -> CUSP

- **Weeks 42,43,44**
 - Trials of new merging schemes

- **Weeks 46,47,48**
 - Slow extraction scheme & Cross merging scheme

- **Week 50**
 - Slow continuous extraction of \bar{p} to Timepix3

- **Continued plans for 2018**
 - Continue optimizing new mixing schemes
 - Control of positron plasma parameters (temperature, density)
 - Implement 3D tracking for the antihydrogen detector
 - Determine n-distribution for new mixing schemes and e^+ conditions
 - \bar{p} annihilation studies for different targets
 - 1-2 weeks at the end with 1-2 w break

ASACUSA collaboration
E. Widmann SPSC128 23 Jan 2018
III Fragmentation studies in antiproton-nucleus annihilations
Existing studies

• Data from GRACE (AEgIS)
 • Emulsion
 • Low statistics
• No good agreement with Monte Carlo codes
 • GEANT4: Chips, Fritiof
 • FLUKA
• More data welcome

AEgIS collaboration, *Journal of Instrumentation* 12, P04021 (2017)
Slow extraction from MUSASHI

- Energy 150 eV
- 240 $\bar{p}/4$ cm2 / 2 AD shots
- 100 extractions / shift
- Duration 20 s
First results

• 90,000 annihilation events in C taken during ~4 shifts, analysis ongoing
• Plans for 2018: measure several different target foils
IV Experiments with a polarized hydrogen beam
Goal

• Validate the spectroscopy technique for \bar{H} using H-beam
 • Source of polarized 50 K H-beam
 • Parts of \bar{H} apparatus used, setup located at CERN cryolab, now Bat. 275

• Perform measurements to determine SME coefficients
 • Permanent sextupoles
 • New optics for alternating measurements of σ and π transitions
σ-transition in H using \bar{H} setup

Error 2.7 ppb: 18x improvement over Kush, Phys. Rev. 100, 1188 (1955)
Deviation from maser ($\Delta f/f \sim 10^{-12}$): 3.4 Hz < 1σ error
Extrapolation to \bar{H}: 8000 atoms needed to achieve 1 ppm

$\nu_{HF} = 1 \ 420 \ 405 \ 748.4(3.4)(1.6) \ Hz$

In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

M. Diermaier1, C.B. Jepsen2,1, B. Kolbinger1, C. Malbrunot2,1, O. Massicotte1, C. Sauercopf1, M.C. Simon1, J. Zmeskal1 & E. Widmann1

Received 4 Oct 2016 | Accepted 24 Apr 2017 | Published 12 Jun 2017 | DOI: 10.1038/nature23749 | OPEN
Non-minimal SME & H-beam

- Shift only for \(\pi \)-transition \((\Delta m_F \neq 0) \)

\[
2\pi \delta \nu = - \frac{\Delta m_F}{2\sqrt{3}\pi} \sum_{q=0}^{2} (\alpha m_\pi)^{2q} (1 + 4\delta_{q2}) \\
\times \sum_{w} [g_{w(2q)10}^{NR(0B)} - H_{w(2q)10}^{NR(0B)} + 2g_{w(2q)10}^{NR(1B)} - 2H_{w(2q)10}^{NR(1B)}].
\]

- \(B \) direction dependence

\[
\Delta(2\pi \nu_\pi) = 2\pi \nu_\pi(B) - 2\pi \nu_\pi(-B) = -\frac{\cos \theta}{\sqrt{3}\pi} \sum_{q=0}^{2} (\alpha m_\pi)^{2q} (1 + 4\delta_{q2}) \sum_{w} [g_{w(2q)10}^{NR,Sun(0B)} - H_{w(2q)10}^{NR,Sun(0B)} + 2g_{w(2q)10}^{NR,Sun(1B)} - 2H_{w(2q)10}^{NR,Sun(1B)}].
\]

σ and π transitions in same setup condition

Trajectories

Field gradients

Beam direction

<table>
<thead>
<tr>
<th>Method</th>
<th>(\nu_0 \pm \delta \nu) (Hz)</th>
<th>(\delta \nu/\nu) (ppb)</th>
<th>(\nu_0 - \nu_{\text{fit}}) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma) - extrapolation, eq. (5)</td>
<td>1 420 405 767 ± 15</td>
<td>10</td>
<td>+15</td>
</tr>
<tr>
<td>(\pi_1) - extrapolation, eq. (6)</td>
<td>1 420 405 760 ± 34</td>
<td>24</td>
<td>+8</td>
</tr>
<tr>
<td>weighted mean of above</td>
<td>1 420 405 766 ± 14</td>
<td>10</td>
<td>+14</td>
</tr>
<tr>
<td>(\sigma) - (\pi) pairs, eq. (7)</td>
<td>1 420 405 753 ± 8</td>
<td>6</td>
<td>+1</td>
</tr>
</tbody>
</table>
Ramsey method

- Reduce line width by \(D/L\)
 - Strip-line cavity line shape not ideal
 - \(D = 10\) cm \(L = 1\) m

- Other microwave generation methods under study
 - \(TM_{110}\) cylindrical cavity
 - \(B_{osc}\) constant in \(z\)

- Current-driven plates
V. ASACUSA hardware contribution to ELENA
Beam profile monitors

- 42 beam profile monitors under construction
- 26 translator stages at CERN, 16 under repair
- 12 electrode sets at CERN, 30 more in production
- 3 operational and tested
- Readout system being developed
- 15% of cost not covered
Acknowledgements

• AD team for providing antiproton beam
• BE-RF group for RFQD troubleshooting
• Funding sources

ASACUSA collaboration
Spares
Calculated two-photon transition frequency

\[(n,l) = (36,34) \rightarrow (34,32)\]

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-relativistic energy</td>
<td>1 522 150 208.13 MHz</td>
</tr>
<tr>
<td>(m\alpha^4) order corrections</td>
<td>-50320.64</td>
</tr>
<tr>
<td>(m\alpha^5) order corrections</td>
<td>7070.28</td>
</tr>
<tr>
<td>(m\alpha^6) order corrections</td>
<td>113.11</td>
</tr>
<tr>
<td>(m\alpha^7) order corrections</td>
<td>-10.46(20)</td>
</tr>
<tr>
<td>(m\alpha^8) order corrections</td>
<td>-0.12(12)</td>
</tr>
<tr>
<td>Transition frequency</td>
<td>1 522 107 060.3(2)</td>
</tr>
<tr>
<td>Uncertainty from alpha charge radius</td>
<td>+/-0.007</td>
</tr>
<tr>
<td>Uncertainty from antiproton charge radius</td>
<td>< 0.0007</td>
</tr>
</tbody>
</table>

Korobov, Hilico, Karr, PRA 89, 032511 (2014).