Proposal to study tau-neutrino production in high-energy proton interactions (SPSC-P-354)

Tomoko Ariga for the DsTau collaboration

Kyushu University & University of Bern

Physics motivations

- Tau neutrinos are among the less known particles in the SM
- Large systematic uncertainty in the cross section measurement
- Precise measurement of v_{τ} CC cross section would be:
 - Search for new physics effect in v_{τ} nucleon interaction
 - Important for future neutrino experiments and astrophysical

 v_{τ} observations

Main v_{τ} source: $D_s \rightarrow \tau$ decays produced in proton interactions

- → No experimental data on differential cross section of D_s
- \rightarrow Large systematic uncertainty (~50%) in the v_{τ} flux prediction

Systematic uncertainty in DONuT measurement

9 v_{τ} CC events observed with an estimated background of 1.5 events

$$v_{\tau}$$
 CC cross section $\sigma_{v\tau}(E) = \sigma_{v\tau}^{const} \times E_{v\tau} \times K_{\tau}(E)$

Parameter-dependent cross section result

The largest uncertainty in DONuT:

 \textbf{D}_{s} differential cross section (used to calculate the ν_{τ} flux)

Parametrization used in DONUT

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$$
longitudinal transverse dependence dependence

No experimental result effectively constraining the D_s differential cross section

The energy-independent part was parameterized as

$$\sigma_{v\tau}^{const} = 7.5(0.335 \, n^{1.52}) \times 10^{-40} \, cm^2 \, GeV^{-1}$$

The DsTau project at the CERN SPS

Goals

- Measurement of v_{τ} production
- Reduce systematic uncertainty in the cross section measurement $50\% \rightarrow 10\%$
 - Re-evaluation of the DONUT result.
 - Important input for future v_{τ} experiment: v_{τ} program in SHiP

Principle of the experiment

- Detect double-kink + another decay topology within a few mm
 - Technical challenge to detect small kink angle of $D_s \rightarrow \tau$ decays
- Measure D_s differential production cross section

Emulsion detectors: 3D tracking device with 50 nm precision

20 um

2018/1/23

AgBr crystal

10¹⁴ crystals in a film

-200

-100

Residuals [nm]

100

200

6

High precision measurement of track angles

- Intrinsic resolution of each grain = 50 nm
 - Two grains on top and bottom of 200 μ m base \rightarrow 0.35 mrad
 - Discrimination of 2 mrad at 4σ level
- A new system with piezo-based Z axis under development
- Angular measurement reproducibility of 0.15 mrad was achieved

 Angular alignment between films to be done by using dense 400 GeV proton tracks

Piezo objective scanner

Module structure for $D_s \to \tau \to X$ measurement

Experimental setup at the H4 beamline (beam test)

Efficiency of $D_s \to \tau \to X$ detection

Selection	Total efficiency (%)
(1) Flight length of D _s ≥ 2 emulsion layers	77
(2) Flight length of $\tau \ge 2$ layers & $\Delta\theta(D_s \rightarrow \tau) \ge 2$ mrad	43
(3) Flight length of D $_{\rm s}$ < 5 mm & flight length of τ < 5 mm	31
(4) Δθ $(τ)$ ≥ 15mrad	28
(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta\theta$ > 15 mrad or neutral decays)	20

FL: flight length

 $\Delta\theta$: kink angle

Expected signal events

Design values

Analysis of 2.3x10⁸ proton interactions with 4.6x10⁹ pot

 $4x10^5$ charm-pairs produced $9x10^4$ D_s produced \rightarrow 1000 D_s \rightarrow τ events will be detected

• With beam density 10⁵ /cm², detector surface of 4.6 m² (film surface 593 m²) to be scanned

Two step analysis for double kink search

- 1. High speed scanning of full area to select τ -> X + partner-charm decays ($\Delta\theta$ ~100 mrad)
- 2. Precision measurement to detect $D_s \rightarrow \tau$ decay (a few mrad)

A fast scanning system in Nagoya Scanning speed 0.5 m²/h/layer Angular resolution ~2 mrad

Nano-precision measurements in Bern Angular resolution ~0.3 mrad

2018/1/23 CERN SPSC Jan 2018

Evolution of automated scanning system

Development of scanning system started in 1970s.

FOV 5x5 mm²
Scanning speed 0.5 m²/h

100 times faster than OPERA

D_s momentum reconstruction

 Difficult to measure D_s momentum directly due to short lifetime

→ New method for D_s momentum reconstruction by topological variables

FL: flight length $\Delta\theta$: kink angle

- A Neural Network with 4 variables was trained with MC events
- Momentum resolution for $\tau \rightarrow 1$ prong decays $\Delta p/p = 18\%$

Expected performance

Relative systematic uncertainty for cross section measurement:

- ~30% with 2018 run
- → Re-evaluation of the DONUT result
- ~10% with 2021-2022 run
- → Input for future measurement

Uncertainties in cross section measureme	DONuT	Systematic uncertainty after	Future v_{τ} measurement with
		DsTau outcome	DsTau outcome
ν_{τ} statistics	0.33		0.02
D _s differential cross section (x _F dependence)	>0.50	0.10	0.10
Charm production cross section	0.17		
Decay branching ratio ($D_s \rightarrow \tau$)	0.23 (0.04 at present)	0.05	0.05
Target atomic mass effects	0.14		

Aiming at 10% precision to look for new physics effects in v_{τ} -nucleon CC interactions

Status of the project

- Letter of Intent, Feb. 2016
 - Beam tests in Nov. 2016, May 2017
- Proposal (SPSC-P-354), Aug. 2017

- The DsTau collaboration
 - The collaborators are experienced scientists from the former CHORUS, DONUT, OPERA and cosmic-ray experiments. Some are also involved in the SHiP project.

Run plan and schedule

Run	Beam time	Emulsion surface	Goal
2016 test beam		(10 modules) (nonuniform exp.)	Test of the setup Proof of principle
2017 test beam		(~2 modules)	Improvement of exposure scheme
2018 pilot run	1 week	48 m ² (30 modules)	Test of large data taking and analysis BG estimation with data Physics results (~80 $D_s \rightarrow \tau$ detected)
2021- physics run	2 weeks in 2021 + 2 weeks in 2022 (another option: 3.5 weeks in 2021)	545 m ² (338 modules)	Physics results (~1000 D _s \rightarrow τ detected)

• Preparation for the 2018 pilot run in progress

- Funding OK
- Emulsion gel ordered
- Film production in Nagoya and Bern scheduled in May Jul.
- Ready for the run in Aug. or Sep.

Beam tests in 2016, 2017

- Nov. 2016 H4 beamline
 - Test of the exposure scheme and the setup
 - Proof of principle
- May 2017 H2 beamline
 - Updated exposure sequence (intensity driven synchronization between beam intensity and target mover)
 - Tests to improve angular resolution

Detector setup at the H4 beamline (beam test)

2018/1723 CERN SPSC Jan 2018

Exposure scheme

- Move detector modules w.r.t. the beam
 - 2016: moved at a constant speed during the spill
 - 2017: intensity driven control by scintillator counter (feedback each 0.2 sec)
- Need ~1 h per module
 - 4 x 11 spills + 20 min to exchange modules

Scanning sequence of the target mover

speed x 8

Time profile in a spill

Position distribution of proton tracks in the detector: comparison between 2016 and 2017

Significant improvement achieved in 2017

Analysis scheme after full area scanning

- Conventional tracking (made for OPERA) didn't work in the high track density environment of DsTau
 - OPERA: 100 tracks/cm² in wide angular space (θ <500 rad)
 - DsTau: 100,000 tracks/cm² in small angular space (θ <10 mrad)
- New tracking algorithm has been developed and tested

Data from the beam tests (with new track reconstruction)

Measured proton beam density in the analyzed region: 4.36x10⁵ beam tracks/3.61 cm²

Intera	ctions in a tungsten plate		
			N vertices
	Expected		1860
	Ola comina d		With parent 1832
	Observed	,	Without parent 130

- Consistent with the expectation
- Uncertainty due to reconstruction will be reduced by further study

Data from the beam tests (with new track reconstruction)

Double-decay topology event (open charm)

(Video in ppt)

400 GeV proton

- Kink
 - IP of daughter 291.6 μm
 - FL 2536.6 μm
 - kink angle 118 mrad
- Vee
 - IP of daughters 20.9, 109.7 μm
 - FL 554.5 μm
 - opening angle 242 mrad

100 μm

2018/1/23 CERN SPSC Jan 2018

Summary and prospect

- Motivation to precise measurement of v_{τ} CC cross section
 - Search for new physics effect in v_{τ} nucleus interaction
 - Important for future neutrino experiments and astrophysical v_{τ} observations
- The DsTau project to measure v_{τ} production (D_s differential production cross section), reduce systematic uncertainty in the cross section measurement to 10%
 - Re-evaluation of the DONUT result
 - Important input for future v_{τ} experiment: v_{τ} program in SHiP
- Aims to detect 1,000 D_s $\rightarrow \tau$ decays in 2.3 \times 10⁸ proton interactions
 - Emulsion detectors with nano-precision readout
 - By-products in charm physics (~10⁵ charm production)
- Test experiments conducted in 2016-2017
- Pilot run in 2018 and physics run from 2021

Backup

The DONuT experiment (Fermilab E872)

- First direct observation of v_{τ} interactions
- $9 v_{\tau}$ CC events observed with an estimated background of 1.5 events

Charm production cross section results

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - \left| x_F \right|)^n \exp(-bp_T^2)$$

Experiment	Beam type / energy (GeV)	σ(D _s) (μb/nucl)	σ(D [±]) (μb/nucl)	σ(Dº) (μb/nucl)	σ(Λ _c) (μb/nucl)	x_F and p_T dependence: n and b (GeV/c) ⁻²
HERA-B	p/920	18.5 ± 7.6 (~11 events)	20.2 ± 3.7	48.7 ± 8.1	-	$n(D^0, D^+) = 7.5 \pm 3.2$
E653	p / 800	-	38 ± 17	38 ± 13		$n(D^0, D^+) = 6.9^{+1.9}_{-1.8}$ $b(D^0, D^+) = 0.84^{+0.10}_{-0.08}$
E743 (LEBC-MPS)	p / 800	-	26 ± 8	22 ± 11		$n(D) = 8.6 \pm 2.0$ $b(D) = 0.8 \pm 0.2$
E781 (SELEX)	Σ ⁻ (sdd) / 600					~350 D _s ⁻ events, ~130 D _s ⁺ events (x _F > 0.15) $n(D_s^-) = 4.1 \pm 0.3$ (leading effect) $n(D_s^+) = 7.4 \pm 1.0$
NA27	p / 400		12 ± 2	18 ± 3		
NA16	p/360		5 ± 2	10 ± 6		
WA92	π/350	1.3 ± 0.4		8 ± 1		
E769	p / 250	1.6 ± 0.8	3 ± 1	6 ± 2		320 \pm 26 events (D $^{\pm}$, D 0 , D $_{s}$ $^{\pm}$) n(D $^{\pm}$, D 0 , D $_{s}$ $^{\pm}$) = 6.1 \pm 0.7 b(D $^{\pm}$, D 0 , D $_{s}$ $^{\pm}$) = 1.08 \pm 0.09
E769	π [±] / 250	2.1 ± 0.4		9 ± 1		1665 \pm 54 events (D $^{\pm}$, D 0 , D $_{s}^{\pm}$) n(D $^{\pm}$, D 0 , D $_{s}^{\pm}$) = 4.03 \pm 0.18 b(D $^{\pm}$, D 0 , D $_{s}^{\pm}$) = 1.08 \pm 0.05
NA32	π/230	1.5 ± 0.5		7 ± 1		

(Results from LHCb at \sqrt{s} = 7, 8 or 13 TeV are not included since the energies differ too much)

No experimental result effectively constraining the D_s differential cross section at the desired level or consequently the v_{τ} production

	DsTau	SHiP charm (SPSC-EOI-017)
structure	Thin target + decay volume	ECC with sliced replica target + magnet + muID
Target	Tungsten / Molybdenum	TZM
Emulsion film area	593 m ²	20 m ² – 60 m ²
# of modules (runs)	368	40 – 120
pot	4.6 x 10 ⁹	2 x 10 ⁷
# of interactions	2.3 x 10 ⁸	? O(10 ⁷)
Charm pair produced	several x 10 ⁵	104
Charm pair detection eff	36%	12%
Charm pair detected	a few 10 ⁵	103
Ds produced	105	103
Ds detected (not Ds->tau, no separation from D)	4 x 10 ⁴	? 100 (20% of D ⁰)
Ds→ tau → X	103	no sensitivity
DAQ	100 kHz (not limited by electric detectors, but stage movement)	<10 kHz (limited by DAQ design)

Topological variables: correlation with p_{Ds}

Sample: 1-prong decay

Background to $D_s \rightarrow \tau$

Main background: hadronic interactions without any detectable nuclear fragments

Current estimation of hadronic background

Using the mean free path for interactions without any detectable nuclear fragments 11 m for a 5-GeV π beam

- A double kink with FL < 5 mm is $(4.5 \times 10^{-4})^2$ per particle.
- BG rate: 9x10⁻⁹ per proton int.
- (Signal rate: D_s production rate $4x10^{-4}$ x Br($D_s \rightarrow \tau$) 5.55% x efficiency 20% = $4x10^{-6}$ per proton int.)
- Study with FLUKA in progress
- Validation from real data planned with the 2018 data

Efficiency of $D_s \to \tau \to X$ detection

Selection	Total efficiency (%)
(1) Flight length of D _s ≥ 2 emulsion layers	77
(2) Flight length of $\tau \ge 2$ layers & $\Delta\theta(D_s \rightarrow \tau) \ge 2$ mrad	43
(3) Flight length of D_s < 5 mm & flight length of τ < 5 mm	31
(4) Δθ $(τ)$ ≥ 15mrad	28
(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta\theta$ > 15 mrad or neutral decays)	20

Indication of possible non-universality in leptonic decays of B mesons

• W decays (LEP combination)

$$\frac{\mathcal{B}(W \to \mu \nu_{\mu})/\mathcal{B}(W \to e \nu_{e}) = 0.994 \pm 0.020}{\frac{\mathcal{B}(W \to \tau \nu_{\tau})}{\frac{1}{2} (\mathcal{B}(W \to e \nu_{e}) + \mathcal{B}(W \to \mu \nu_{\mu}))}} = 1.077 \pm 0.026$$

B-meson decays

Review, doi:10.1038/nature22346

$${\cal B}(B o auar
u_ au)$$

$$\mathcal{B}(B o au ar{
u}_{ au})$$
 $R_D = \mathcal{B}(ar{B} o D au ar{
u}_{ au})/\mathcal{B}(ar{B} o D\mu ar{
u}_{\mu})$

Estimation of parameter *n* for DONUT re-evaluation

Reconstructed x_F

Estimated parameter *n*

For future measurement, a more appropriate parametrization will be used

Unfolding of the reconstruction xF distribution to be applied (method will be investigated)