Resolving Force of Fixel Detector Timepix for Wide-Range Electron, Proton and Ion Detection

Carlos Granja^{1,2}, Jan Jakubek¹, M. Sommer², O. Ploc²

D. Chvatil², P. Krist², V. Zach², J. Stursa², V. Olsansky², T. Matlocha²

Satoshi Kodaira³, Maria Martiskova⁴

¹Advacam, Prague, Czech Republic

dkfz.lear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic

ADVACAM

lmaging the Unseen

VACAM Imaging the Unseen

ational Institute of Radiological Sciences NIRS, HIMAC, Chiba, Japar

German Cancer Research Center DKFZ, HIT, Heidelberg, Germany

VIRS

Resolving Power of Pixel Detector Timepix for Wide-Range Electron, Proton and Ion Detection Motivation + Goals + Challenges + Status

- Timepix family of detectors increasingly used to detect and characterize mixed radiation fields such as those found in outer space, near Earth, deep space, upper atmosphere, ion beam radiotherapy.
- Of particular value is the detector resolving power in terms of particle-type, spectral- (energy loss) and direction/tracking.
- The challenge is to provide resolving power with <u>high sensitivity</u> and <u>wide</u> <u>dynamic range</u> in terms of particle types, stopping power and direction with a single compact device
- Experimental study, tests and calibration of a single Timepix (300 µm Silicon): evaluation of detection response in defined fields of various radiations (electrons, protons, ions) in wide range of fluxes, energies and incident directions
 MAXAMOY | Eve

Use of Timepix in space

- Applications:
- Radiation dosimetry (quantum imaging dosimetry, LET spectra, on line response)
- Radiation monitoring (miniaturization, integration)
- Characterization of radiation fields (photon counting, per-px spectrometry, wide range)
- □ Science/research
- Space weather
- Focal plane X-ray imager
- Micro-tracker/directional camera
- Gamma-ray Compton camera

21 mm

Protection

cover

Sensor

window

Neutron detection

77 mm

Deployments of Timepix in space/orbit

- Applications:
- NASA ISS-REM-TPX 2012
- ESA Proba-V/SATRAM-TPX spacecraft payload 2013
- NASA BIRD-TPX Orion EFT-1 2014
- NASA ISS HERA-TPX 2016
- NASA ISS EPT TPX telescope 2017
- □ Science/research
- CZ X-ray focal plane detector/X-ray telescope on board Czech VZLUSAT-1 cubesat 2016
- Educational
- GB TechDemoSat1

Origin of Secondary Cosmic Rays

@ CRD 2014

Metsamor

(Nuclear Power Plant)

SNR

GCR-

π

ASNT

0

protons and fully stripped atoms

EAS

CUBE

A. Chilingarian,

Inst./CRREAT

Van Alen Belt

Double layers

The isochronous cyclotron U-120M

Center of Accelerators and Nuclear Analytical Methods (CANAM) http://canam.ujf.cas.cz

Cyklotron accelerator

lons		Energy [MeV]	Max. current [µA]
H+	Internal beam	1 - 37	> 200
H+	External beam	6 - 25	5
H⁻/H+	External beam	6 - 37	50 - 30
D+	Internal beam	2 - 20	> 80
D+	External beam	12 - 20	5
D-/D+	External beam	11 - 20	35 - 20
³ He ⁺²	Internal beam	3 - 55	20
³ He ⁺²	External beam	18 - 52	2
⁴ He ⁺² (α)	Internal beam	4 - 40	40
⁴ He ⁺² (α)	External beam	24 - 38	5

Note: Energy range of internal beams is for the probe radii from 20-50 cm.

Electron microtron accelerator

	Before modernization	After modernization			
Maximum energy	25 MeV	25 MeV			
Energy range	6 - 25 MeV	6 - 25 MeV			
Electron current	10 µA	25 μA			
High frequency source					
Tunable magnetron	2 790 ± 50 MHz	2 796 ± 5 MHz			
Peak power	2 MW	3 MW			
Pulse lenght	3 µs	3 µs			
Repetition rate	400 s ⁻¹	max. 425 s ⁻¹			
Resonator freq.	2 784 MHz	2 796 MHz			
Power supply freq.	400 Hz	50 Hz			

Highly integrated (contact geometry) WidePIX3D 4xTPX tracker

WidePIX3D: 4x TPX telescope

FoV

Energetic charged particles

Physics/radiation research at accelerator research facilities

Electron Microtron accelerator Nuclear Physics Institute, Prague, Czech Academy of Sciences

ead shielding adiation, EMI

WidePIX3D

ectron Deam

Imaging the Unseen

TPX1

TPX2

TPX3

TPX4

Electron beam

> NPI-CAS, Rez near Prague Electron Microtron Accelerator

Imaging the Unseen

protons: varying E + unfiltered data 30.9 MeV protons

26.6 MeV protons

c)

80

60

40

20

Ο

Ó.

Position [pixel]

E3

Quantum imaging detection, spectrometry, tracking

Energetic charged particles: relativistic ions, secondary reaction/fragmentation products

CRREAT

Particle

E

E2

E

E

Single particle detection and spectrometry

60

10

60

10

Position [pixel]

Λ

Position [pixel]

Unwanted

events,

background, X-

rays, scattered

particles

C. Granja, IEAP CTU Prague 2014

Cluster analysis + Pattern recognition: Heavy charged particles: protons, ions

Detection Response of Timepix: Micro-scale tracks

#	Parameter	Value in cluster	Range [#]	Units
А	Area	# of pixels	1 – few 100's	рх
E	Deposited energy	Sum of energies of all pixels	$5 - 1_{x} 10^{6}$ \$	keV
Н	Height	Largest per-pixel energy	$5 - 1_x 10^3 $	keV
R	Roundness	Extent of circular shape	0 - 1	a.u.
Lin	Linearity	Extent of track length approaching a straight line	0 – 1	a.u.
Len	Length	Path length of track across sensor	$1 - few \ 100$	px
W	Width	Transversal width of pixel distribution along track length		
LET	Linear energy transfer	Ratio of energy to length		
α	Polar angle	Projected angle on the sensor plane	0 - 180°	deg
β	Elevation angle	Elevation angle to the sensor plane	0 - 90°	deg

Table 1: Morphology spectrometric and tracking parameters of cluster analysis

#: Upper limit approximate level

\$: Lower limit given by the detector sensitivity and calibration, typically at the level of few keV/px @: Upper limit typically up to 1 MeV (linear range of calibration) and 2 MeV (distorted region).

a.u.: arbitrary units

px: pixels

Degrees of freedom: Particle type

- Particle energy, stopping power
- Particle direction

Energetic (penetrating) charged particles:

- Deposited energy
- Position of interaction
- dE/dx \rightarrow LET, stopping power
- Direction (ang res ≈ 5-10°)

Pattern recognition and micro-scale tracking of single charged particles

Imaging the Unseen

45 deg

^ D V A C A M

0 deg 20.4 MeV electrons

Imaging the Unseen

a) 2 deg 7.8 MeV electrons

d) 30 deg

e) 45 deg

b) 0 deg

12.4 MeV electrons

c) 0 deg 20.4 MeV electrons

X-position [pixel] X-position [pixel] ADVAGAIVEOU | EVENT NAME | Presentation title

X-position [pixel]

X-position [pixel] 3/13/2010

45 deg 20.4 MeV electrons

^[]→ ^[]→

20 40 60 80 100 120 X-position [pixel]
∧ D ∨ A ⊂ A M Imaging the Unseen

d) 21 MeV/u 4 He, β = 15°

X-position [pixel]

e) 61 MeV/u ⁴He, β = 15°

X-position [pixel]

b) 30.9 MeV protons, $\beta = 15^{\circ}$

f) 144 MeV/u ⁴He, β = 15°

60 80 100 120 140 160 180 X-position [pixel]

http://vzlusat1.cz ZLUSAT-1 Czech cubesat in LEO orbit Rigaku X-ray 1-D optics telescope + focal plane detector Timepix

- VZLUSAT-1: Technology demonstration
- QB50: Launched 23rd June 2017 in LEO 505 km polar orbit on board India's PSLV-XL rocket

Pixelated 300 um thick Si etector chip (256 x 256

ixels, 55 um pitch)

- Successful commissioning, presently taking data

Pixel detector:

Detector bias voltage (~100V

Timepix ASIC chip Read-out ASIC + 300 µm Si sensor chip Medipix. **Pixel detector &** PCB: weight 60 g

- Vladimir Daniel, et al.,

ZLUSAT-1 Czech cubesat in LEO orbit

Miniaturized X-ray telescope + focal plane detector Timepix

http://vzlusat1.cz

(2) Rigaku

X-rays

ZLUSAT-1 Czech cubesat in LEO orbit Miniaturized X-ray telescope + focal plane detector Timepix

Detection and visualization of radiation field along VZLUSAT-1 orbit (7th Sept 2017 – geomagnetic storm)

X-ray payload (TPX 300 um silicon) onboard VZLUSAT-1 satellite, frame = 832₀1.txt

X-ray payload (TPX 300 um silicon) onboard VZLUSAT-1 satellite, frame = 837₀1.txt

