One-loop amplitudes with space-like initial-state momenta

Andreas van Hameren
Institute of Nuclear Physics Polish Academy of Sciences
Kraków
presented at
HP2 2018: High Precision for Hard Processes
01-10-2018, University of Freiburg, Germany

Difet azinnutha oe_correiation

The azimuthal de-correlations, that is the distribution of the angle in the transverse plane between the two hardest jets, for $\mathrm{pp} \rightarrow \mathrm{jj}$ at 7 TeV (data: CMS 2011).

This observable has no distribution at LO (tree-level) in collinear factorization.
Red prediction: collinear factorization at NLO Blue prediction: k_{T}-dependent factorization at tree-level

$Z+j$ azimuthal de-correlation

Comparison to LHCb-data at $\sqrt{s}=7 \mathrm{TeV}$

```
        1/\sigmad\sigma/d\Delta\phi, p
*)
```


k_{T}-factorization
collinear factorization

$Z+j$ azimuthal de-correlation

Comparison to LHCb-data at $\sqrt{s}=7 \mathrm{TeV}$

parton-level event generation with KaTie (AvH 2016)
parton-shower with CCFM(-style) evolution by CASCADE (Jung, Baranov, Deak, Grebenyuk, Hautmann, Hentschinski, Knutsson, Kraemer, Kutak, Lipatov, Zotov, 2010)

High Energy Factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

$$
\sigma_{\mathrm{h}_{1}, \mathrm{~h}_{2} \rightarrow \mathrm{QQ}}=\int \mathrm{d}^{2} k_{1 \perp} \frac{d x_{1}}{x_{1}} \mathcal{F}\left(x_{1}, k_{1 \perp}\right) d^{2} k_{2 \perp} \frac{d x_{2}}{x_{2}} \mathcal{F}\left(x_{2}, k_{1 \perp}\right) \hat{\sigma}_{g g}\left(\frac{m^{2}}{x_{1} x_{2} s}, \frac{k_{1 \perp}}{m}, \frac{k_{2 \perp}}{m}\right)
$$

- reduces to collinear factorization for $s \gg m^{2} \gg k_{\perp}^{2}$, but holds al so for $s \gg m^{2} \sim k_{\perp}^{2}$
- typically associated with small-x physics, forward physics, saturation ...
- k_{\perp}-dependent \mathcal{F} may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, ...
- allows for higher-order kinematical effects at leading order
- requires matrix elements with off-shell initial-state partons with $\mathrm{k}_{\mathrm{i}}^{2}=\mathrm{k}_{\mathrm{i} \perp}^{2}<0$

$$
\begin{aligned}
& k_{1}=x_{1} p_{1}+k_{1 \perp} \\
& k_{2}=x_{2} p_{2}+k_{2 \perp}
\end{aligned}
$$

- Can this factorization be generalized to other processes?
- This requires at least a formulation and calculation of off-shell matrix elements for these processes.

Factorization
For forward dijet production
in dilute-dense hadronic collisions

Different factorization formulas are applicable for different kinematical regions in terms of the hard scale P_{T}, the transverse momentum inbalance k_{T}, and the saturation scale Q_{s}.

Factorization
For forward dijet production
in dilute-dense hadronic collisions

Hybrid High Energy Factorization

$$
d \sigma_{A B \rightarrow x}=\int d k_{T}^{2} \int d x_{A} \int d x_{B} \sum_{b} \mathcal{F}_{g^{*} / A}\left(x_{A}, k_{T}, \mu\right) f_{b / B}\left(x_{B}, \mu\right) d \hat{\sigma}_{g^{*} b \rightarrow x}\left(x_{A}, x_{B}, k_{T}, \mu\right)
$$

Eg. forward-central scattering: $x_{B}>x_{A}$, and $P_{T} \sim k_{T} \gg Q_{s}$.
Unintegrated gluon density $\mathcal{F}_{g^{*} / A}\left(x_{A}, k_{T}, \mu\right)$ evolved following BFKL or similar.
Partonic cross section d $_{g^{*}}$ b is calculated with an off-shell initial-state gluon.

Factorization
For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization

$$
d \sigma_{A B \rightarrow x}=\int d k_{T}^{2} \int d x_{A} \sum_{i} \int d x_{B} \sum_{b} \phi_{g b}^{(i)}\left(x_{A}, k_{T}, \mu\right) f_{b / B}\left(x_{B}, \mu\right) d \hat{\sigma}_{g b \rightarrow X}^{(i)}\left(x_{A}, x_{B}, k_{T}, \mu\right)
$$

For $x_{A} \ll 1$ and $P_{T} \gg k_{T} \sim Q_{s}$.
TMD gluon distributions $\phi_{g b}^{(i)}\left(x_{A}, k_{T}, \mu\right)$ satisfy non-linear evolution equations, and admit saturation.
Partonic cross section $d \hat{\sigma}_{g b}^{(i)}$ depends on color-structure i, and is calculated with on-shell initial-state partons.

Factorization
For forward dijet production
in dilute-dense hadronic collisions

Improved generalized TMD factorization
Model interpolating between High Energy Factorization and Generalized TMD factorization: $P_{T} \gtrsim k_{T} \gtrsim Q_{s}$.
Partonic cross section $d \hat{\sigma}_{g b}^{(i)}$ depends on color-structure i, and is calculated with off-shell initial-state partons.

Amplitude as embedding

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Amplitude as embedding

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Amplitude as embedding
AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

$$
j \xrightarrow{K} \ldots \ldots i=\delta_{i, j} \frac{i}{p_{1} \cdot k}
$$

Amplitude as embedding

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

 $+\cdots$

Off-shell one-loop amplitudes

Initial steps have already been taken in the parton reggeization approach employing Lipatov's effective action.
Hentschinski, Sabio Vera 2012
Chachamis, Hentschinski, Madrigal, Sabio Vera 2012
Nefedov, Saleev 2017
The main problem is caused by linear denominators in loop integrals and the divergecies they cause.

$$
\int d^{4-2 \varepsilon} \ell \frac{\mathcal{N}(\ell)}{p \cdot\left(\ell+K_{0}\right)\left(\ell+K_{1}\right)^{2}\left(\ell+K_{3}\right)^{2}\left(\ell+K_{4}\right)^{2}}=?
$$

In particular one would like to use a regularization that

- is manifestly Lorentz covariant
- manifestly preserves gauge invariance
- can be used incombination with dimensional regularization
- is practical

Off-shell one-loop amplitudes

where p, q are light-like with $\mathrm{p} \cdot \mathrm{q}>0$, where $\mathrm{p} \cdot \mathrm{k}_{\mathrm{T}}=\mathrm{q} \cdot \mathrm{k}_{\mathrm{T}}=0$, and where

$$
\alpha=\frac{-\beta^{2} k_{T}^{2}}{\Lambda(p+q)^{2}} \quad, \quad \beta=\frac{1}{1+\sqrt{1-x / \Lambda}} \Longrightarrow\left\{\begin{array}{l}
p_{A}^{2}=p_{A^{\prime}}^{2}=0 \\
p_{A}^{\mu}+p_{A^{\prime}}^{\mu}=x p^{\mu}+k_{T}^{\mu}
\end{array}\right.
$$

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for $\Lambda \rightarrow \infty$:

$$
i \frac{p_{A}+K}{\left(p_{A}+K\right)^{2}}=\frac{i \not p}{2 p \cdot K}+\mathcal{O}\left(\Lambda^{-1}\right)
$$

Divide by Λ to get the desired amplitude

$$
\left.\left.\left\langle p_{A}\right| \rightarrow \sqrt{\Lambda}\langle p| \quad, \quad \mid p_{A^{\prime}}\right] \rightarrow-\sqrt{\Lambda} \mid p\right]
$$

Off-shell one-loop amplitudes

$$
p_{A}^{\mu}=\Lambda p^{\mu}+\alpha q^{\mu}+\beta k_{T}^{\mu} p_{A^{\prime}}^{\mu}=(x-\Lambda) p^{\mu}-\alpha q^{\mu}+(1-\beta) k_{T}^{\mu}
$$

where p, q are light-like with $\mathrm{p} \cdot \mathrm{q}>0$, where $\mathrm{p} \cdot \mathrm{k}_{\mathrm{T}}=\mathrm{q} \cdot \mathrm{k}_{\mathrm{T}}=0$, and where

$$
\alpha=\frac{-\beta^{2} k_{T}^{2}}{\Lambda(p+q)^{2}} \quad, \quad \beta=\frac{1}{1+\sqrt{1-x / \Lambda}} \Longrightarrow\left\{\begin{array}{l}
p_{A}^{2}=p_{A^{\prime}}^{2}=0 \\
p_{A}^{\mu}+p_{A^{\prime}}^{\mu}=x p^{\mu}+k_{T}^{\mu}
\end{array}\right.
$$

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for $\Lambda \rightarrow \infty$:

$$
i \frac{p_{A}+K}{\left(p_{A}+K\right)^{2}}=\frac{i \not p}{2 p \cdot K}+\mathcal{O}\left(\Lambda^{-1}\right)
$$

- Λ-parametrization provides natural regularization for linear denominators in loop integrals.
- Taking this limit after loop integration will lead to singularities $\log \wedge$.

$$
m^{1}\left(g^{+}, q^{-}, \bar{q}^{+}\right)=m^{0}\left(g^{+}, q^{-}, \bar{q}^{+}\right) \frac{\alpha_{s}}{4 \pi} r_{\Gamma}\left(\frac{4 \pi \mu^{2}}{-M_{H}^{2}}\right)^{\epsilon}\left[N_{c} V_{1}+\frac{1}{N_{c}} V_{2}+n_{f} V_{3}\right]
$$

with

$$
\begin{aligned}
V_{1}= & \frac{1}{\epsilon^{2}}\left[-\left(\frac{-M_{H}^{2}}{-S_{g q}}\right)^{\epsilon}-\left(\frac{-M_{H}^{2}}{-S_{g \bar{q}}}\right)^{\epsilon}\right]+\frac{13}{6 \epsilon}\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon} \\
& -\ln \left(\frac{-S_{g q}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{q \bar{q}}}{-M_{H}^{2}}\right)-\ln \left(\frac{-S_{g \bar{q}}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{q \bar{q}}}{-M_{H}^{2}}\right) \\
& -2 \operatorname{Li}_{2}\left(1-\frac{S_{q \bar{q}}}{M_{H}^{2}}\right)-\operatorname{Li}_{2}\left(1-\frac{S_{g q}}{M_{H}^{2}}\right)-\operatorname{Li}_{2}\left(1-\frac{S_{g \bar{q}}}{M_{H}^{2}}\right) \\
& +\frac{83}{18}-\frac{\delta_{R}}{6}+\frac{\pi^{2}}{3}-\frac{1}{2} \frac{S_{q \bar{q}}}{S_{g \bar{q}}},
\end{aligned}
$$

$$
V_{2}=\left[\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right]\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon}+\ln \left(\frac{-S_{g q}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{g \bar{q}}}{-M_{H}^{2}}\right) \quad \begin{aligned}
& S_{g q}=\left(\mathrm{p}_{A}+\mathrm{k}_{\mathrm{g}}\right)^{2} \rightarrow 2 \Lambda \mathrm{p} \cdot \mathrm{k}_{\mathrm{g}} \\
& S_{g \bar{\sigma}}=\left(\mathrm{p}_{A^{\prime}}+\mathrm{k}_{\mathrm{g}}\right) \rightarrow-2 \Lambda \mathrm{p} \cdot \mathrm{k}_{\mathrm{g}}
\end{aligned}
$$

$$
+\mathrm{Li}_{2}\left(1-\frac{S_{g q}}{M_{H}^{2}}\right)+\mathrm{Li}_{2}\left(1-\frac{S_{g \bar{q}}}{M_{H}^{2}}\right)
$$

$$
S_{q \bar{q}}=k_{T}^{2}
$$

$$
+\frac{7}{2}+\frac{\delta_{R}}{2}-\frac{\pi^{2}}{6}-\frac{1}{2} \frac{S_{q \bar{q}}}{S_{g \bar{q}}}
$$

$$
V_{3}=-\frac{2}{3 \epsilon}\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon}-\frac{10}{9} .
$$

$$
m^{1}\left(g^{+}, q^{-}, \bar{q}^{+}\right)=m^{0}\left(g^{+}, q^{-}, \bar{q}^{+}\right) \frac{\alpha_{s}}{4 \pi} r_{\Gamma}\left(\frac{4 \pi \mu^{2}}{-M_{H}^{2}}\right)^{\epsilon}\left[N_{c} V_{1}+\frac{1}{N_{c}} V_{2}+n_{f} V_{3}\right]
$$

with

$$
\begin{aligned}
V_{1}= & \frac{1}{\epsilon^{2}}\left[-\left(\frac{-M_{H}^{2}}{-S_{g q}}\right)^{\epsilon}-\left(\frac{-M_{H}^{2}}{-S_{g \bar{q}}}\right)^{\epsilon}\right]+\frac{13}{6 \epsilon}\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon} \\
& -\ln \left(\frac{-S_{g q}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{q \bar{q}}}{-M_{H}^{2}}\right)-\ln \left(\frac{-S_{g \bar{q}}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{q \bar{q}}}{-M_{H}^{2}}\right) \\
& -2 \operatorname{Li}_{2}\left(1-\frac{S_{q \bar{q}}}{M_{H}^{2}}\right)-\operatorname{Li}_{2}\left(1-\frac{S_{g q}}{M_{H}^{2}}\right)-\operatorname{Li}_{2}\left(1-\frac{S_{g \bar{q}}}{M_{H}^{2}}\right) \\
& +\frac{83}{18}-\frac{\delta_{R}}{6}+\frac{\pi^{2}}{3}-\frac{1}{2} \frac{S_{q \bar{q}}}{S_{g \bar{q}}},
\end{aligned}
$$

$$
V_{2}=\left[\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right]\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon}+\ln \left(\frac{-S_{g q}}{-M_{H}^{2}}\right) \ln \left(\frac{-S_{g \bar{q}}}{-M_{H}^{2}}\right) \quad l \begin{aligned}
& S_{g q}=\left(\mathrm{p}_{\mathrm{A}}+\mathrm{k}_{\mathrm{g}}\right)^{2} \rightarrow 2 \wedge \mathrm{p} \cdot \mathrm{k}_{\mathrm{g}} \\
& \left.S_{g q}\right)
\end{aligned}
$$

$$
+\mathrm{Li}_{2}\left(1-\frac{S_{g q}}{M_{H}^{2}}\right)+\mathrm{Li}_{2}\left(1-\frac{S_{g \bar{q}}}{M_{H}^{2}}\right)
$$

$$
\mathrm{S}_{\mathrm{q} \overline{\mathrm{q}}}=\mathrm{k}_{\mathrm{T}}^{2}
$$

$$
+\frac{7}{2}+\frac{\delta_{R}}{2}-\frac{\pi^{2}}{6}-\frac{1}{2} \frac{S_{q \bar{q}}}{S_{g \bar{q}}}, \quad \quad \mathrm{~m}^{1}\left(\mathrm{~g}^{+}, \mathrm{q}^{-}, \overline{\mathrm{q}}^{+}\right) \propto\left[\frac{1}{\epsilon}-\ln \left(\frac{-\mathrm{k}_{T}^{2}}{\mu^{2}}\right)\right] \ln \wedge+\cdots
$$

$$
V_{3}=-\frac{2}{3 \epsilon}\left(\frac{-M_{H}^{2}}{-S_{q \bar{q}}}\right)^{\epsilon}-\frac{10}{9} .
$$

$$
\begin{aligned}
& c(s, t, u)=g^{4}\left(\mu^{2}\right)(\mu)^{4 \epsilon}\left\{c ^ { (4) } (s , t , u) \left(1+\frac{\alpha_{S}}{2 \pi}\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\epsilon} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\right.\right. \\
& \left.\left[\frac{V}{2 N}\left(-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-7\right)+N\left(-\frac{2}{\epsilon^{2}}-\frac{11}{3 \epsilon}+\frac{11}{3} l\left(-\mu^{2}\right)\right)+T_{R}\left(\frac{4}{3 \epsilon}-\frac{4}{3} l\left(-\mu^{2}\right)\right)\right]\right) \\
& +\frac{\alpha_{S}}{2 \pi}\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\epsilon} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)} \\
& {\left[\frac { l (s) } { \epsilon } \left(\left(\left(2 N^{2} V+\frac{2 V}{N^{2}}\right) \frac{t^{2}+u^{2}}{u t}-4 V^{2} \frac{t^{2}+u^{2}}{s^{2}}\right)\right.\right.} \\
& +\frac{4 N^{2} V}{\epsilon}\left(l(t)\left(\frac{u}{t}-\frac{2 u^{2}}{s^{2}}\right)+l(u)\left(\frac{t}{u}-\frac{2 t^{2}}{s^{2}}\right)\right) \\
& \left.-\frac{4 V}{\epsilon}\left(\frac{u}{t}+\frac{t}{u}\right)(l(t)+l(u))\right] \\
& \left.+\frac{\alpha_{s}}{2 \pi}\left(f^{c}(s, t, u)+f^{c}(s, u, t)\right)\right\}+O(\epsilon) \\
& t=\left(p_{A}+k_{2}\right)^{2} \rightarrow 2 \Lambda p \cdot k_{2} \\
& u=\left(p_{A}+k_{3}\right) \rightarrow-2 \Lambda p \cdot k_{2} \\
& s=k_{T}^{2} \\
& {\left[\frac{1}{\epsilon}-1-\ln \left(\frac{-k_{T}^{2}}{\mu^{2}}\right)\right] \ln \Lambda} \\
& f^{c}(s, t, u)=4 N V\left\{\frac{l(t) l(u)}{N}\left(\frac{t^{2}+u^{2}}{2 t u}\right)\right. \\
& +l^{2}(s)\left(\frac{1}{4 N^{3}} \frac{s^{2}}{t u}+\frac{1}{4 N}\left(\frac{1}{2}+\frac{t^{2}+u^{2}}{t u}-\frac{t^{2}+u^{2}}{s^{2}}\right)-\frac{N}{4}\left(\frac{t^{2}+u^{2}}{s^{2}}\right)\right) \\
& +l(s)\left(\left(\frac{5}{8} \frac{V}{N}-\frac{1}{2 N}-\frac{1}{N^{3}}\right)-\left(N+\frac{1}{N^{3}}\right)\left(\frac{t^{2}+u^{2}}{2 t u}\right)-\frac{V}{4 N}\left(\frac{t^{2}+u^{2}}{s^{2}}\right)\right) \\
& +\pi^{2}\left(\frac{1}{8 N}+\frac{1}{N^{3}}\left(\frac{3\left(t^{2}+u^{2}\right)}{8 t u}+\frac{1}{2}\right)+N\left(\frac{t^{2}+u^{2}}{8 t u}-\frac{t^{2}+u^{2}}{2 s^{2}}\right)\right) \\
& +\left(N+\frac{1}{N}\right)\left(\frac{1}{8}-\frac{t^{2}+u^{2}}{4 s^{2}}\right) \\
& +l^{2}(t)\left(N\left(\frac{s}{4 t}-\frac{u}{s}-\frac{1}{4}\right)+\frac{1}{N}\left(\frac{t}{2 u}-\frac{u}{4 s}\right)+\frac{1}{N^{3}}\left(\frac{u}{4 t}-\frac{s}{2 u}\right)\right) \\
& +l(t)\left(N\left(\frac{t^{2}+u^{2}}{s^{2}}+\frac{3 t}{4 s}-\frac{5 u}{4 t}-\frac{1}{4}\right)-\frac{1}{N}\left(\frac{u}{4 s}+\frac{2 s}{u}+\frac{s}{2 t}\right)-\frac{1}{N^{3}}\left(\frac{3 s}{4 t}+\frac{1}{4}\right)\right) \\
& \left.+l(s) l(t)\left(N\left(\frac{t^{2}+u^{2}}{s^{2}}-\frac{u}{2 t}\right)+\frac{1}{N}\left(\frac{u}{2 s}-\frac{t}{u}\right)+\frac{1}{N^{3}}\left(\frac{s}{u}-\frac{u}{2 t}\right)\right)\right\}
\end{aligned}
$$

Some four-point master integrals

$$
k^{\mu}=x p^{\mu}+k_{T}^{\mu}
$$

$$
p_{A}^{\mu}=\Lambda p^{\mu}+\alpha q^{\mu}+\beta k_{T}^{\mu} p_{A^{\prime}}^{\mu}=(x-\Lambda) p^{\mu}-\alpha q^{\mu}+(1-\beta) k_{T}^{\mu}
$$

$$
[\mathrm{d} \ell]=\frac{\Gamma(2-\varepsilon) \mu^{2 \varepsilon}}{\Gamma^{2}(1-\varepsilon) \Gamma(1+\varepsilon) i \pi^{2-\varepsilon}} \mathrm{d}^{4-2 \varepsilon} \ell
$$

$$
=\int[\mathrm{d} \ell] \frac{\Lambda}{\ell^{2}\left(\ell+\mathrm{p}_{\mathrm{A}}+\mathrm{K}_{1}\right)^{2}\left(\ell-\mathrm{K}_{3}-\mathrm{K}_{4}\right)^{2}\left(\ell-\mathrm{K}_{4}\right)^{2}}
$$

Just use known expressions for regularized scalar integrals, put $\left(p_{A}+K_{1}\right)^{2} \rightarrow 2 \wedge p \cdot K_{1}, \quad\left(-p_{A}+K_{2}+K_{4}\right)^{2} \rightarrow-2 \wedge p \cdot\left(K_{2}+K_{4}\right)$ etcetera, and take $\Lambda \rightarrow \infty$

Some four-point master integrals

$$
[\mathrm{d} \ell]=\frac{\Gamma(2-\varepsilon) \mu^{2 \varepsilon}}{\Gamma^{2}(1-\varepsilon) \Gamma(1+\varepsilon) i \pi^{2-\varepsilon}} \mathrm{d}^{4-2 \varepsilon} \ell
$$

$$
\overbrace{\mathrm{K}_{4}}^{\mathrm{p}_{\mathrm{A}}+\mathrm{K}_{1}}-_{\mathrm{K}_{3}}^{-\mathrm{p}_{\mathrm{A}}+\mathrm{K}_{2}}=\int[d \ell] \frac{1}{\ell^{2}\left(\ell+\mathrm{p}_{\mathrm{A}}+\mathrm{K}_{1}\right)^{2}\left(\ell-\mathrm{K}_{3}-\mathrm{K}_{4}\right)^{2}\left(\ell-\mathrm{K}_{4}\right)^{2}}
$$

$$
\underbrace{p_{A}}_{K_{4}}=\frac{-1}{p \cdot K_{4} k_{T}^{2}}\left\{\left[\frac{1}{\varepsilon}-\ln \left(\frac{-k_{T}^{2}}{\mu^{2}}\right)\right] \ln \Lambda+\cdots\right\}
$$

Some triangles

$$
\sum_{-K_{2}}^{k_{2}-p_{A}}=\frac{1}{2 p \cdot k_{2}}\left\{\frac{\ln ^{2} \Lambda}{2}+\ln \left(\frac{-2 p \cdot k_{2}}{\mu^{2}}\right) \ln \Lambda-\frac{\ln \Lambda}{\varepsilon}+\cdots\right\}
$$

$$
\wp_{k_{3}}^{p_{A}+K_{1}}=\frac{1}{2 p \cdot\left(K_{1}-K_{2}\right)}\left\{\ln \left(\frac{-2 p \cdot K_{1}}{-2 p \cdot K_{2}}\right) \ln \Lambda+\cdots\right\}
$$

$$
\wp_{-k}^{p_{A}} p_{A^{\prime}}=\frac{\Lambda}{k_{T}^{2}}\left\{\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon} \log \left(\frac{k_{T}^{2}}{-\mu^{2}}\right)+\frac{1}{2} \log ^{2}\left(\frac{k_{T}^{2}}{-\mu^{2}}\right)\right\}
$$

Decomposition into master integrals

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals still holds for finite Λ.

$$
\begin{aligned}
& \mathcal{A}^{(1)}=\int[d \ell] \frac{\mathcal{N}(\ell)}{\prod_{i} \mathcal{D}_{i}(\ell)}=\sum_{i, j, k, l} c_{4}(i, j, k, l) I_{4}(i, j, k, l)+\sum_{i, j, k} c_{3}(i, j, k) I_{3}(i, j, k) \\
& \quad+\sum_{i, j} c_{2}(i, j) I_{2}(i, j)+\sum_{i} c_{1}(i) I_{1}(i)+\mathcal{R}+\mathcal{O}(\varepsilon) \\
& I_{4}(i, j, k, l)=\int[d \ell] \frac{1}{\mathcal{D}_{i}(\ell) \mathcal{D}_{j}(\ell) \mathcal{D}_{k}(\ell) \mathcal{D}_{l}(\ell)} \quad, \quad \mathcal{D}_{i}(\ell)=\left(\ell+K_{i}\right)^{2}-m_{i}^{2}+i \eta
\end{aligned}
$$

The coefficients $c_{4}, c_{3}, c_{2} . c_{1}$ are determined from the integrand. (di)logarithms of external invariants and Λ appear in the master integrals I_{4}, I_{3}, I_{2}.

Decomposition into master integrals

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals still holds for finite Λ.

$$
\begin{aligned}
& \mathcal{A}^{(1)}=\int[d \ell] \frac{\mathcal{N}(\ell)}{\prod_{i} \mathcal{D}_{i}(\ell)}=\sum_{i, j, k, l} c_{4}(i, j, k, l) I_{4}(i, j, k, l)+\sum_{i, j, k} c_{3}(i, j, k) I_{3}(i, j, k) \\
&+\sum_{i, j} c_{2}(i, j) I_{2}(i, j)+\sum_{i} c_{1}(i) I_{1}(i)+\mathcal{R}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

It is not completely correct to take $\Lambda \rightarrow \infty$ in the integrand before reduction, and just replace

$$
\frac{1}{2 p \cdot(\ell+K)} \rightarrow \frac{\Lambda}{(\ell+\Lambda p+K)^{2}}
$$

in the master integrals

Non-commuting limits

$$
p_{A}^{\mu}=\Lambda p^{\mu}+\alpha q^{\mu}+\beta k_{T}^{\mu} p_{A^{\prime}}^{\mu}=(x-\Lambda) p^{\mu}-\alpha q^{\mu}+(1-\beta) k_{T}^{\mu}
$$

For two-point master integrals and one three-point master integrals, integration does not commute with the limit $\Lambda \rightarrow \infty$: integration "eats" a power of Λ from the denominator.

$$
\Lambda p+K \rightarrow--\Lambda p-K=\int \frac{[d \ell]}{\ell^{2}(\ell+\Lambda p+K)^{2}} \rightarrow \frac{1}{\varepsilon}+2-\log \left(\frac{2 \Lambda p \cdot K}{-\mu^{2}}\right)
$$

$$
p_{A \rightarrow-k}^{p_{A^{\prime}}}=\int \frac{[d \ell]}{\ell^{2}\left(\ell+p_{A}\right)^{2}(\ell+k)^{2}} \rightarrow \frac{1}{k_{T}^{2}}\left\{\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon} \log \left(\frac{k_{T}^{2}}{-\mu^{2}}\right)+\frac{1}{2} \log ^{2}\left(\frac{k_{T}^{2}}{-\mu^{2}}\right)\right\}
$$

This complication manifests itself also in the fact that for these master integrals the solutions to the cut equations diverge with Λ.

Coefficient for the anomalous triangle

Coefficient for the anomalous triangle

cut: $\left.\left.\ell^{\mu}=\frac{1}{2}\left\langle p_{A}\right] \gamma^{\mu}\left(z \mid p_{A^{\prime}}\right]-\mid p_{A}\right]\right)$ for any value of z The solution diverges with Λ.

Coefficient for the anomalous triangle

cut: $\left.\left.\ell^{\mu}=\frac{1}{2}\left\langle p_{A}\right] \gamma^{\mu}\left(z \mid p_{A^{\prime}}\right]-\mid p_{A}\right]\right)$ for any value of z The solution diverges with Λ.

Coefficient $(\propto \Lambda)$ times scalar function $(\propto 1)$ behaves like a tree-level amplitude $(\propto \Lambda)$, as it should.

Coefficient for the bubbles

cut solution $\ell^{\mu} \propto \Lambda$

Coefficient $(\propto \Lambda)$ times scalar function $(\propto 1)$ behaves like a tree-level amplitude ($\propto \Lambda$), as it should.

Non-contributing cuts

Non-contributing cuts

Non-contributing cuts

Box with two \wedge-dependent denominators

Boxes with two Λ-dependent denominators decompose into 4 triangles:

$$
\begin{aligned}
& \Lambda^{2} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{0}\right)^{2}\left(\ell+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}} \\
&=\frac{\Lambda}{2 p \cdot\left(\mathrm{~K}_{3}-\mathrm{K}_{2}\right)} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+\mathrm{K}_{0}\right)^{2}\left(\ell+\mathrm{K}_{1}\right)^{2}\left(\ell+\Lambda p+\mathrm{K}_{2}\right)^{2}} \\
&+\frac{\Lambda}{2 \mathrm{p} \cdot\left(\mathrm{~K}_{2}-\mathrm{K}_{3}\right)} \int \frac{\mathrm{d}^{4-2 \varepsilon} \ell}{\left(\ell+\mathrm{K}_{0}\right)^{2}\left(\ell+\mathrm{K}_{1}\right)^{2}\left(\ell+\Lambda \mathrm{p}+\mathrm{K}_{3}\right)^{2}} \\
&+\frac{\Lambda}{2 \mathrm{p} \cdot\left(\mathrm{~K}_{0}-\mathrm{K}_{1}\right)} \int \frac{\mathrm{d}^{4-2 \varepsilon} \ell}{\left(\ell+\mathrm{K}_{1}\right)^{2}\left(\ell+\Lambda \mathrm{p}+\mathrm{K}_{2}\right)^{2}\left(\ell+\Lambda p+\mathrm{K}_{3}\right)^{2}} \\
&+\frac{\Lambda}{2 \mathrm{p} \cdot\left(\mathrm{~K}_{1}-\mathrm{K}_{0}\right)} \int \frac{\mathrm{d}^{4-2 \varepsilon} \ell}{\left(\ell+\mathrm{K}_{0}\right)^{2}\left(\ell+\Lambda p+\mathrm{K}_{2}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}}+\mathcal{O}\left(\frac{1}{\Lambda}\right)
\end{aligned}
$$

Box with two \wedge-dependent denominators

Boxes with two Λ-dependent denominators decompose into 4 triangles:

$$
\begin{aligned}
& \Lambda^{2} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{0}\right)^{2}\left(\ell+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}} \\
& =\frac{\Lambda}{2 p \cdot\left(K_{3}-K_{2}\right)} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{0}\right)^{2}\left(\ell+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}} \\
& +\frac{\Lambda}{2 p \cdot\left(K_{2}-K_{3}\right)} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{0}\right)^{2}\left(\ell+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}} \\
& +\frac{\Lambda}{2 p \cdot\left(K_{0}-K_{1}\right)} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}} \\
& +\frac{\Lambda}{2 p \cdot\left(K_{1}-K_{0}\right)} \int \frac{d^{4-2 \varepsilon} \ell}{\left(\ell+K_{0}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}\left(\ell+\Lambda p+K_{3}\right)^{2}}+\mathcal{O}\left(\frac{1}{\Lambda}\right) \\
& \left.\begin{array}{rl}
\frac{\Lambda^{2}}{\left(\ell+\Lambda p+K_{1}\right)^{2}\left(\ell+\Lambda p+K_{2}\right)^{2}} & =\frac{1}{2 p \cdot\left(K_{2}-K_{1}\right)}\left[\frac{\Lambda}{\left(\ell+\Lambda p+K_{1}\right)^{2}}-\frac{\Lambda}{\left(\ell+\Lambda p+K_{2}\right)^{2}}\right]
\end{array}\right) \cup \cup\left(\frac{1}{\Lambda}\right)
\end{aligned}
$$

Contributing cuts

Only cuts with at most one auxiliary quark line contribute, plus one triple-cut with two auxiliary quark lines involving the anomalous triangle.

Contributing cuts

Only cuts with at most one auxiliary quark line contribute, plus one triple-cut with two auxiliary quark lines involving the anomalous triangle.

$$
\begin{aligned}
\frac{\Lambda^{2}}{\left(\ell+\Lambda p+K_{1}\right)^{2}(\ell}+ & \left.\Lambda p+\mathrm{K}_{2}\right)^{2} \\
& =\frac{1}{2 \mathrm{p} \cdot\left(\mathrm{~K}_{2}-\mathrm{K}_{1}\right)}\left[\frac{\Lambda}{\left(\ell+\Lambda p+\mathrm{K}_{1}\right)^{2}}-\frac{\Lambda}{\left(\ell+\Lambda p+\mathrm{K}_{2}\right)^{2}}\right]+\mathcal{O}\left(\frac{1}{\Lambda}\right)
\end{aligned}
$$

Conclusions

- k_{T}-dependent factorization gives the opportunity to have complete kinematics at lowest order in perturbative calculations
- it allows for the application of initial-state parton showers without changing the hard kinematics
- it appears in the proper description of dilute-dens collisions
- it requires hard scattering amplitudes with space-like initial-state momenta
- these amplitudes are well defined and computable at tree-level
- there is a natural regularization for the singularities at one loop related to linear denominators, which allows for explicit application of integrand/unitarity methods

Generalization of on-shellness

n-parton amplitude is a function of n momenta $k_{1}, k_{2}, \ldots, k_{n}$
and n directions $p_{1}, p_{2}, \ldots, p_{n}$, satisfying the conditions

$$
\begin{aligned}
\mathrm{k}_{1}^{\mu}+\mathrm{k}_{2}^{\mu}+\cdots+\mathrm{k}_{n}^{\mu}=0 & \text { momentum conservation } \\
\mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2}=\cdots=\mathrm{p}_{n}^{2}=0 & \text { light-likeness } \\
\mathrm{p}_{1} \cdot \mathrm{k}_{1}=\mathrm{p}_{2} \cdot \mathrm{k}_{2}=\cdots=\mathrm{p}_{\mathrm{n}} \cdot \mathrm{k}_{\mathrm{n}}=0 & \text { eikonal condition }
\end{aligned}
$$

With the help of an auxiliary four-vector q^{μ} with $q^{2}=0$, we define

$$
k_{\mathrm{T}}^{\mu}(\mathrm{q})=\mathrm{k}^{\mu}-x(\mathrm{q}) \mathrm{p}^{\mu} \quad \text { with } \quad x(\mathrm{q}) \equiv \frac{\mathrm{q} \cdot \mathrm{k}}{\mathrm{q} \cdot \mathrm{p}}
$$

Construct k_{T}^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$
k_{\mathrm{T}}^{\mu}(q)=-\frac{\kappa}{2} \varepsilon^{\mu}-\frac{k^{*}}{2} \varepsilon^{* \mu} \quad \text { with } \begin{cases}\varepsilon^{\mu}=\frac{\left.\langle p| \gamma^{\mu} \mid q\right]}{[p q]} & , \quad k=\frac{\langle q| k \mid p]}{\langle q p\rangle} \\ \varepsilon^{* \mu}=\frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\langle q p\rangle}, \quad \kappa^{*}=\frac{\langle p| k \mid q]}{[p q]}\end{cases}
$$

$k^{2}=-K k^{*}$ is independent of q^{μ}, but also individually k and k^{*} are independent of q^{μ}.

The BCFW recursion formula becomes

"On-shell condition" for "off-shell" gluons: $p_{i} \cdot k_{i}=0$

BCFW recursion for off-shell amplitudes

The BCFW recursion formula becomes

"On-shell condition" for "off-shell" gluons: $p_{i} \cdot k_{i}=0$

BCFW recursion for off-shell amplitudes

The BCFW recursion formula becomes

Non-commuting limits

$$
p_{A}^{\mu}=\Lambda p^{\mu}+\alpha q^{\mu}+\beta k_{T}^{\mu} p_{A^{\prime}}^{\mu}=(x-\Lambda) p^{\mu}-\alpha q^{\mu}+(1-\beta) k_{T}^{\mu}
$$

Integrand-based reduction methods cannot be applied with naïve limit $\Lambda \rightarrow \infty$ on integrand. For example, the integrand of the following graph (Feynman gauge) vanishes in that limit, but the integral does not:

$$
\begin{aligned}
\Lambda p+K \rightarrow & =\int[d \ell] \frac{\left.\langle p| \gamma^{\mu}(\ell+\Lambda p+K) \gamma_{\mu} \mid p\right]}{\ell^{2}(\ell+\Lambda p+K)^{2}} \\
& =2 p \cdot K\left[\ln \Lambda-\frac{1}{\varepsilon}-1+\ln \left(-\frac{2 p \cdot K}{\mu^{2}}\right)+\mathcal{O}(\varepsilon)\right]
\end{aligned}
$$

But $\left.\langle p| \gamma^{\mu} p \gamma_{\mu} \mid p\right]=0$, so naïve power counting in Λ does not work.

