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|Dijet azimuthal de-correlation| Bury, AvH, Jung, Kutak,
Sapeta, Serino 2017

The azimuthal de-correlations, that is the distribution of the angle in the transverse plane
between the two hardest jets, for pp→ jj at 7 TeV (data: CMS 2011).

This observable has no distribution at LO (tree-level) in collinear factorization.

Red prediction: collinear factorization at NLO
Blue prediction: kT -dependent factorization at tree-level
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|Z+ j azimuthal de-correlation| Deak, AvH, Jung, Kusina,
Kutak, Serino 2018

Comparison to LHCb-data at
√
s = 7TeV
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|Z+ j azimuthal de-correlation| Deak, AvH, Jung, Kusina,
Kutak, Serino 2018

Comparison to LHCb-data at
√
s = 7TeV
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|High Energy Factorization| a.k.a. kT -factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

σh1,h2→QQ =

∫
d2k1⊥

dx1

x1
F(x1, k1⊥)d

2k2⊥
dx2

x2
F(x2, k1⊥) σ̂gg

(
m2

x1x2s
,
k1⊥

m
,
k2⊥

m

)
• reduces to collinear factorization for s� m2 � k2⊥, but holds al so for s� m2 ∼ k2⊥

• typically associated with small-x physics, forward physics, saturation . . .

• k⊥-dependent F may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, . . .

• allows for higher-order kinematical effects at leading order

• requires matrix elements with off-shell
initial-state partons with k2i = k

2
i⊥ < 0

k1 = x1p1 + k1⊥

k2 = x2p2 + k2⊥

• Can this factorization be generalized to other processes?

• This requires at least a formulation and calculation of off-shell matrix elements for
these processes.

9995



|Factorization| For forward dijet production
in dilute-dense hadronic collisions

Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015

Dominguez, Marquet, Xiao, Yuan 2011

Glass

Color

Condensate

Hybrid High Energy Factorization

generalized TMD factorization

Collinear
improved TMD factorization

easy

easy

Different factorization formulas are applicable for different kinematical regions in terms of
the hard scale PT , the transverse momentum inbalance kT , and the saturation scale Qs.
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|Factorization| For forward dijet production
in dilute-dense hadronic collisions

Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015

Dominguez, Marquet, Xiao, Yuan 2011

Glass

Color

Condensate

Hybrid High Energy Factorization

generalized TMD factorization

Collinear
improved TMD factorization

easy

easy

Hybrid High Energy Factorization

dσAB→X =

∫
dk2T

∫
dxA

∫
dxB
∑
b

Fg∗/A(xA, kT , µ) fb/B(xB, µ)dσ̂g∗b→X(xA, xB, kT , µ)
Eg. forward-central scattering: xB � xA, and PT ∼ kT � Qs.
Unintegrated gluon density Fg∗/A(xA, kT , µ) evolved following BFKL or similar.
Partonic cross section dσ̂g∗b is calculated with an off-shell initial-state gluon.
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|Factorization| For forward dijet production
in dilute-dense hadronic collisions

Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015

Dominguez, Marquet, Xiao, Yuan 2011

Glass

Color

Condensate

Hybrid High Energy Factorization

generalized TMD factorization

Collinear
improved TMD factorization

easy

easy

Generalized TMD factorization

dσAB→X =

∫
dk2T

∫
dxA
∑
i

∫
dxB
∑
b

φ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

For xA � 1 and PT � kT ∼ Qs.
TMD gluon distributions φ

(i)
gb(xA, kT , µ) satisfy non-linear evolution equations, and admit

saturation.
Partonic cross section dσ̂

(i)
gb depends on color-structure i, and is calculated with on-shell

initial-state partons.
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|Factorization| For forward dijet production
in dilute-dense hadronic collisions

Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015

Dominguez, Marquet, Xiao, Yuan 2011

Glass

Color

Condensate

Hybrid High Energy Factorization

generalized TMD factorization

Collinear
improved TMD factorization

easy

easy

Improved generalized TMD factorization

Model interpolating between High Energy Factorization and Generalized TMD factoriza-
tion: PT & kT & Qs.

Partonic cross section dσ̂
(i)
gb depends on color-structure i,

and is calculated with off-shell initial-state partons.
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|Amplitudes with off-shell initial states|
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1

p2A = p2A ′ = 0 kµ1T = −
κ1

2
εµ1 −

κ∗1
2
ε∗µ1

pµA + pµA ′ = x1p
µ
1 −

κ1

2
εµ1 −

κ∗1
2
ε∗µ1 = kµ1
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1

Λ→∞
⇒

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.
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x
xxIn agreement with the effective action approach of xx
xxLipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005 xx
xxLipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013 xx
xxand the Wilson-line approach of xx
xxKotko 2014 xx
x
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|Off-shell one-loop amplitudes|

Initial steps have already been taken in the parton reggeization approach employing Lipa-
tov’s effective action.
Hentschinski, Sabio Vera 2012
Chachamis, Hentschinski, Madrigal, Sabio Vera 2012
Nefedov, Saleev 2017

The main problem is caused by linear denominators in loop integrals and the divergecies
they cause. ∫

d4−2ε`
N(`)

p·(`+ K0) (`+ K1)2 (`+ K3)2 (`+ K4)2
= ?

In particular one would like to use a regularization that

• is manifestly Lorentz covariant

• manifestly preserves gauge invariance

• can be used incombination with dimensional regularization

• is practical
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒ {
p2A = p2A ′ = 0

pµA + pµA ′ = xp
µ + kµT

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
Divide by Λ to get the desired amplitude

〈pA|→ √Λ 〈p| , |pA ′ ]→ −
√
Λ |p]
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒ {
p2A = p2A ′ = 0

pµA + pµA ′ = xp
µ + kµT

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
• Λ-parametrization provides natural regularization for linear denominators in loop inte-

grals.

• Taking this limit after loop integration will lead to singularities logΛ.
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|∅→ Hgg∗ from ∅→ Hgqq̄| Schmidt 1997

Sgq = (pA + kg)
2 → 2Λp·kg

Sgq̄ = (pA ′ + kg) → −2Λp ·kg
Sqq̄ = k

2
T
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|∅→ Hgg∗ from ∅→ Hgqq̄| Schmidt 1997

Sgq = (pA + kg)
2 → 2Λp·kg

Sgq̄ = (pA ′ + kg) → −2Λp ·kg
Sqq̄ = k

2
T

m1
(
g+, q−, q̄+

)
∝
[
1

ε
− ln

(
−k2T
µ2

)]
lnΛ+ · · ·
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|∅→ ggg∗ from ∅→ ggqq̄| Ellis, Sexton 1986

t = (pA + k2)
2 → 2Λp·k2

u = (pA + k3) → −2Λp ·k2
s = k2T[
1

ε
− 1− ln

(
−k2T
µ2

)]
lnΛ
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some four-point master integrals|

[d`] =
Γ(2− ε)µ2ε

Γ 2(1− ε)Γ(1+ ε)iπ2−ε
d4−2ε`

pA + K1

K4 K3

−pA + K2

=

∫
[d`]

Λ

`2 (`+ pA + K1)2 (`− K3 − K4)2 (`− K4)2

Just use known expressions for regularized scalar integrals, put
(pA + K1)

2 → 2Λp·K1 , (−pA + K2 + K4)
2 → −2Λp·(K2 + K4)

etcetera, and take Λ→∞
99921



kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some four-point master integrals|

[d`] =
Γ(2− ε)µ2ε

Γ 2(1− ε)Γ(1+ ε)iπ2−ε
d4−2ε`

pA + K1

K4 K3

−pA + K2

=

∫
[d`]

Λ

`2 (`+ pA + K1)2 (`− K3 − K4)2 (`− K4)2

pA pA ′

K3K4

=
−1

p·K4 k2T

{[
1

ε
− ln

(
−k2T
µ2

)]
lnΛ+ · · ·

}
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Some triangles|

pA K2 − pA

−K2

=
1

2p·k2

{
ln2Λ

2
+ ln

(
−2p·k2
µ2

)
lnΛ−

lnΛ

ε
+ · · ·

}

pA + K1 K2 − pA

k3

=
1

2p·(K1 − K2)

{
ln

(
−2p·K1
−2p·K2

)
lnΛ+ · · ·

}

pA pA ′

−k

=
Λ

k2T

{
1

ε2
−
1

ε
log

(
k2T
−µ2

)
+
1

2
log2

(
k2T
−µ2

)}
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Decomposition into master integrals|

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals
still holds for finite Λ.

A(1) =

∫
[d`]

N(`)∏
iDi(`)

=
∑
i,j,k,l

c4(i, j, k, l) I4(i, j, k, l) +
∑
i,j,k

c3(i, j, k) I3(i, j, k)

+
∑
i,j

c2(i, j) I2(i, j) +
∑
i

c1(i) I1(i) + R+ O(ε)

I4(i, j, k, l) =

∫
[d`]

1

Di(`)Dj(`)Dk(`)Dl(`)
, Di(`) = (`+ Ki)

2 −m2
i + iη

The coefficients c4, c3, c2.c1 are determined from the integrand .
(di)logarithms of external invariants and Λ appear in the master integrals I4, I3, I2.
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Decomposition into master integrals|

Well-known decomposition for on-shell one-loop amplitudes in terms of master integrals
still holds for finite Λ.

A(1) =

∫
[d`]

N(`)∏
iDi(`)

=
∑
i,j,k,l

c4(i, j, k, l) I4(i, j, k, l) +
∑
i,j,k

c3(i, j, k) I3(i, j, k)

+
∑
i,j

c2(i, j) I2(i, j) +
∑
i

c1(i) I1(i) + R+ O(ε)

It is not completely correct to take Λ → ∞ in the integrand before reduction, and just
replace

1

2p·(`+ K) → Λ

(`+Λp+ K)2

in the master integrals
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|Non-commuting limits|

kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

For two-point master integrals and one three-point master integrals, integration does not
commute with the limit Λ→∞: integration “eats” a power of Λ from the denominator.

Λp+ K −Λp− K =

∫
[d`]

`2 (`+Λp+ K)2
→ 1

ε
+ 2− log

(
2Λp·K
−µ2

)

pA

pA ′

−k

=

∫
[d`]

`2 (`+ pA)2 (`+ k)2
→ 1

k2T

{
1

ε2
−
1

ε
log

(
k2T
−µ2

)
+
1

2
log2

(
k2T
−µ2

)}

This complication manifests itself also in the fact that for these master integrals the
solutions to the cut equations diverge with Λ.
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|Coefficient for the anomalous triangle|

pA

pA ′

∝ Λ
pA

pA ′

∝ Λ
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|Coefficient for the anomalous triangle|

pA

pA ′

∝ Λ
pA

pA ′

∝ Λ

ℓ+ k−ℓ

1 2 n

ℓ+ pA
pA pA ′ = k− pA

cut: `µ = 1
2
〈pA]γµ

(
z|pA ′ ] − |pA]

)
for any value of z

The solution diverges with Λ.
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|Coefficient for the anomalous triangle|

pA

pA ′

∝ Λ
pA

pA ′

∝ Λ

ℓ+ k−ℓ

1 2 n

ℓ+ pA
pA pA ′ = k− pA

2i z pµA ′pνA = i z3 k2T ε
µ
+(ℓ+ k) εν−(−ℓ)

cut: `µ = 1
2
〈pA]γµ

(
z|pA ′ ] − |pA]

)
for any value of z

The solution diverges with Λ.

Coefficient (∝ Λ) times scalar function (∝ 1) behaves like a tree-level amplitude (∝ Λ),
as it should.
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|Coefficient for the bubbles|

pA

pA ′

∝ Λ
pA ′′

pA

pA ′ ∝
√
Λ

ℓ+ pA + K

ℓ

pA ′pA

K −k− K

cut solution `µ ∝ Λ

Coefficient (∝ Λ) times scalar function (∝ 1) behaves like a tree-level amplitude (∝ Λ),
as it should.
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|Non-contributing cuts|

Blobs implicitly have
an arbitrary number
of external gluons.

pA

pA ′

∝ Λ
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|Non-contributing cuts|

Blobs implicitly have
an arbitrary number
of external gluons.

pA

pA ′

∝ Λ
pA

pA ′

∝ 1
pA

pA ′

∝ 1
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|Non-contributing cuts|

pA

pA ′

∝ Λ
pA ′′

pA

pA ′ ∝
√
Λ

pA

pA ′

∝ Λ
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|Box with two Λ-dependent denominators|

Boxes with two Λ-dependent denominators decompose into 4 triangles:

Λ2
∫

d4−2ε`

(`+ K0)2(`+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2

=
Λ

2p·(K3 − K2)

∫
d4−2ε`

(`+ K0)2(`+ K1)2(`+Λp+ K2)2

+
Λ

2p·(K2 − K3)

∫
d4−2ε`

(`+ K0)2(`+ K1)2(`+Λp+ K3)2

+
Λ

2p·(K0 − K1)

∫
d4−2ε`

(`+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2

+
Λ

2p·(K1 − K0)

∫
d4−2ε`

(`+ K0)2(`+Λp+ K2)2(`+Λp+ K3)2
+ O

(
1

Λ

)
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|Box with two Λ-dependent denominators|

Boxes with two Λ-dependent denominators decompose into 4 triangles:

Λ2
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(`+ K0)2(`+ K1)2(`+Λp+ K2)2

+
Λ

2p·(K2 − K3)

∫
d4−2ε`

(`+ K0)2(`+ K1)2(`+Λp+ K3)2

+
Λ

2p·(K0 − K1)

∫
d4−2ε`

(`+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2

+
Λ

2p·(K1 − K0)

∫
d4−2ε`

(`+ K0)2(`+Λp+ K2)2(`+Λp+ K3)2
+ O

(
1

Λ

)

Λ2

(`+Λp+ K1)2(`+Λp+ K2)2

=
1

2p·(K2 − K1)

[
Λ

(`+Λp+ K1)2
−

Λ

(`+Λp+ K2)2

]
+ O

(
1

Λ

)
   

   
   

   
   

   
   

   
   

   
   

````````````````````````````````̀
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|Contributing cuts|

Only cuts with at most one auxiliary quark line contribute,
plus one triple-cut with two auxiliary quark lines involving
the anomalous triangle.
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|Contributing cuts|

Only cuts with at most one auxiliary quark line contribute,
plus one triple-cut with two auxiliary quark lines involving
the anomalous triangle.

Λ2

(`+Λp+ K1)2(`+Λp+ K2)2

=
1

2p·(K2 − K1)

[
Λ

(`+Λp+ K1)2
−

Λ

(`+Λp+ K2)2

]
+ O

(
1

Λ

)
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|Conclusions|

• kT -dependent factorization gives the opportunity to have complete kinematics at lowest
order in perturbative calculations

• it allows for the application of initial-state parton showers without changing the hard
kinematics

• it appears in the proper description of dilute-dens collisions

• it requires hard scattering amplitudes with space-like initial-state momenta

• these amplitudes are well defined and computable at tree-level

• there is a natural regularization for the singularities at one loop related to linear de-
nominators, which allows for explicit application of integrand/unitarity methods

99938



|Backup|
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|Generalization of on-shellness|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2
εµ −

κ∗

2
ε∗µ with


εµ =

〈p|γµ|q]
[pq]

, κ =
〈q|k/|p]
〈qp〉

ε∗µ =
〈q|γµ|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h +

n−1∑
i=2

Bi

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑
i=2

∑
h=+,−

Ai,h +

n−1∑
i=2

Bi + C + D ,

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

C =

1̂ n̂

n− 12
1

κ1
D =

1̂ n̂

n− 12
1

κ∗1
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = (x−Λ)pµ − αqµ + (1− β)kµT

p2A = p2A ′ = 0

p
µ
A + p

µ
A ′ = kµ

|Non-commuting limits|

Integrand-based reduction methods cannot be applied with näıve limit Λ→∞ on inte-
grand. For example, the integrand of the following graph (Feynman gauge) vanishes in
that limit, but the integral does not:

Λp+ K

ℓ

=

∫
[d`]
〈p|γµ(/̀+Λp/+ K/)γµ|p]

`2(`+Λp+ K)2

= 2p·K
[

lnΛ−
1

ε
− 1+ ln

(
−
2p·K
µ2

)
+ O(ε)

]

But 〈p|γµp/γµ|p] = 0, so näıve power counting in Λ does not work.
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